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Abstract

Biometrics has emerged as a reliable person identification method that can over-

come some of the limitations of the traditional automatic personal identification

methods. A biometric system uses unique and measurable physical, biological, or

behavioral traits of people to establish or to verify their identity.

The iris provides one of the most stable biometric signals for use in identification,

with a distinctive texture that is formed before birth and remains constant through-

out life. Iris recognition is considered to have the highest identification accuracy

and commercial iris recognition systems have been deployed in many applications,

like passports and border control.

In this thesis, we have followed the general framework of Daugman’s algorithm

comprising of four stages namely Segmentation, Normalization, Feature Encoding

and Matching. Pupil is segmented using thresholding and morphological operations,

iris boundary is found by using two techniques Daugman’s integro-differential op-

erator and circular hough transform. Daugman’s rubbersheet algorithm is used for

normalization. Gabor filters and Log-Gabor filters are used for feature extraction

and binary template is created by quantizing phase into four quadrants. Hamming

distance is used for pattern matching.

The system was tested on three iris databases namely CASIA v1, Multimedia

University (MMU) and IIT Delhi with all possible intra-class and inter-class com-

parisons with respective classes taken.

Keywords: iris recognition; automatic segmentation; Gabor filter; hamming dis-

tance; inter/intra class distribution; iris template; match score.
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Chapter 1

Introduction

Personal identity refers to a set of attributes (e.g., name, social security number,

etc.) that are associated with a person. Establishing (determining or verifying) the

identity of a person is called person recognition or authentication and it is a critical

task in any identity management system. Identity management is the process of

creating, maintaining and destroying identities of individuals in a population. To

combat the epidemic growth in identity theft and to meet the increased security

requirements in a variety of applications ranging from international border crossing

to accessing personal information in various applications such as sharing networked

computer resources, performing remote financial transactions, web-based services

(e.g., online banking) and the deployment of decentralized customer service centers

(e.g., credit cards) have further underscored the need for reliable identity manage-

ment systems that can accommodate a large number of individuals [3].

The three basic ways to establish the identity of a person are “something you

know” (e.g., password, personal identification number), “something you carry” (e.g.,

physical key, ID card) and “something you are” (e.g., face, voice). Traditional meth-

ods of establishing a persons identity include knowledge based (e.g., passwords) and

token-based (e.g., ID cards) mechanisms can be easily misplaced, shared or stolen.

Moreover, passwords and ID cards cannot provide vital authentication functions

like non-repudiation and detecting multiple enrollments. For example, users can

easily deny using a service by claiming that their password has been stolen or

guessed. Individuals can also conceal their true identity by presenting forged or

duplicate identification documents. Therefore, it is becoming increasingly apparent

that knowledge-based and token-based mechanisms alone are not sufficient for reli-

able identity determination and stronger authentication schemes based on something

you are, namely biometrics, are needed.
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1.1 Biometrics

Biometrics is the science of establishing the identity of an individual based on the

physical, chemical or behavioral attributes of the person. The term biometrics comes

from the ancient Greek bios = “life” and metron = “measure”. Notions of biological,

measuring and recognition are common to any biometric definition. Until the late

1800s the automatic recognition of individuals was largely done using photographic

memory. In 1883, the French police and anthropologist Alphonse Bertillon devel-

oped an anthropometric system, known as Bertillonage [4], to fix the problem of

identification of convicted criminals. As illustrated by figure 1.1.

This was a quite complex procedure that could take up to twenty minutes and

is considered the first scientific system widely used to identify criminals. Its basis

was the measurement of certain lengths and widths of the head and body and the

recording of individual markings, such as tattoos and scars. However this systems

faded when it was discovered that some people share the same measures and several

people could be treated as one. The failure of Bertillonage motivated the use of fin-

gerprinting, which is presently almost standardized worldwide. In 1880, the British

scientific journal Nature published an article by Henry Faulds and William James

describing the uniqueness and permanence of fingerprints. This motivated the de-

sign of the first elementary fingerprint recognition system by Sir Francis Galton and

improved by Sir Edward R. Henry. Having quickly disseminated, the first finger-

print system in the United States was inaugurated by the New York State Prison

Department in 1903 and the first known convicted due to fingerprint evidences was

reported in 1911 [5]

Figure 1.1: Anthropometric system by Alphonse Bertillon
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1.1.1 Modes of Functioning

Independently of the used trait, the biometric applications follow the procedure il-

lustrated in figure 1.2 The process begins by the data capturing, where the biometric

sample is acquired. Next, through the feature extraction a biometric signature is

created, that is further compared with a specific or several biometric signatures reg-

istered in the database. These are commonly designated as biometric templates and

were collected during the enrollment process and correspond to a verified subject

identity. If the comparison between biometric signatures has enough similarity, it is

assumed that both of these were extracted from the same person, otherwise, they

must have been extracted from different persons.

Figure 1.2: Typical stages of biometric recognition process

The number of comparisons between the biometric sample and templates deter-

mines a basic distinctions among the two modes of performing biometric recognition:

verification and identification.

In the verification mode, also named as positive recognition, the system verifies

the authenticity of a claimed enrolled identity, trying to answer the question: is

this person who he/she claims to be? This requires that, together with the biomet-

ric sample, the subjects ID must be given to the recognition algorithm. Further,

the comparison between the biometric template correspondent to that identity and

the sample is performed. If the similarity is high enough, the claimed identity is

accepted, meaning that both biometric signatures were extracted from the same

person. Otherwise, the identity is denied, meaning that the enrolled and the sample

signatures were extracted from different subjects.
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The identification mode, often named as negative recognition, tries to answer the

question: who is this person?, or sometimes: is this person in the database? After

acquiring the required data and extracting the biometric sample, a comparison is

made with the N enrolled identities, in order to find the identity from which the

sample was collected. In this mode, it is usual to output a list of the k most probable

identities of a biometric sample.

1.1.2 A Classification of Biometric Systems

Biometric systems can be classified according to six perspectives:

Overt / covert If the user is aware about the acquisition of his biometric data,

the application is defined as overt; otherwise, is defined as covert. This is clearly one

of the most concerning characteristics of a biometric system, regarding the privacy

issue.

Habituated / non-habituated When the majority of the people that inter-

acts with the biometric system are every-day users, the recognition is performed in

the habituated mode. If the average frequency of use from each user is low, the

recognition is performed in the non-habituated mode. This is relevant to the degree

of cooperation and training demanded from the users.

Attended / non-attended If the user is observed and guided by supervisors

during the process, the biometric recognition is performed attended; if not, the use

is considered non-attended. Obviously, the easy-of-use of the recognition system is

much more relevant in the non-attended mode.

Standard / non-standard environment When all the conditions can be con-

trolled and the recognition takes place indoors within constrained conditions, it is

considered that the recognition is performed within a standard environment; if not,

the use is called in non-standard environment.

Public / private If the users are not employees of the organization that owns

the recognition system, the application is public; if the users are employees, the

application is called private.

Open / closed If the system uses completely proprietary formats, the appli-

cation is considered closed. Otherwise, when the system is able to exchange data

with others, it is called open and, once again, privacy and legal issues should be

addressed.
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1.1.3 Biometric Traits

Biometric systems use a variety of physical or behavioral characteristics 1.3, includ-

ing fingerprint, face, hand/finger geometry, iris, retina, signature, gait, palmprint,

voice pattern, ear, hand vein, odor or the DNA information of an individual to es-

tablish identity [3]. In the biometric literature, these characteristics are referred to

as traits, indicators, identifiers or modalities. While biometric systems have their

own limitations they have an edge over traditional security methods in that they

cannot be easily stolen or shared. Besides bolstering security, biometric systems also

enhance user convenience by alleviating the need to design and remember passwords.

Figure 1.3: Examples of biometric traits that can be used for authenticating an
individual.
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Physiological Traits

Physiological biometrics measure a specific part of the structure or shape of a portion

of a subjects body. The types of physiological biometrics include:

Fingerprint: A fingerprint is a pattern of ridges and furrows located on the tip

of each finger. Fingerprints were used for personal identification for many centuries

and the matching accuracy is acceptable. In the past, patterns were extracted by

creating an inked impression of the fingertip on paper. Today, compact sensors

provide digital images of these patterns.

The main advantages for the use of fingerprints are the higher levels of accept-

ability and their easy of use, while it is considered vulnerable to noise and distortion

brought on by dirt and twists.

Hand: The geometry of an entire human hand is quite unique, almost as much

as fingerprints themselves. Usually a hand scan does not measure the fingerprint-

like patterns in the fingers and palms, but instead relies on the lengths and angles

of fingers, the geometry of the entire collection of 27 bones, plus muscles, ligaments,

and other tissues.

The hand geometry-based biometric systems are easy to use and inexpensive.

The main disadvantage is its relative low discriminating capacity, also the relative

large dimensions of the subjects hands and the requirement of contact to perform

recognition makes it unappropriate for certain applications (e.g., laptop computers

access).

DNA: The deoxyribonucleic acid (DNA) is represented through a one-dimensional

code, unique for each person. Humans have 23 pairs of chromosomes containing their

DNA blueprint. This method is considered to have some drawbacks, as the easy

contamination and sensitivity, the impossibility to perform real-time recognition and

severe privacy issues, due to the fact of the DNA can reveal susceptibility to some

diseases.

Iris: The iris begins to form in the third month of gestation and the structures

creating its pattern are largely complete by the eighth month. It is the annular region

of the eye bounded by the pupil and the sclera (white part of the eye) on either side.

Its complex pattern can contain many distinctive features such as arching ligaments,

furrows, ridges, crypts, rings, corona, freckles and a zigzag collarette.

The available results of both accuracy and speed of iris-based identification are

highly encouraging and point to the feasibility of large-scale recognition using iris

information.

Retina: The retina is the surface at the rear of the interior of the eye. Retinal

scan measures the blood vessel patterns in the back of the eye. Digital images of
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retinal patterns can be acquired by projecting a low intensity beam of visual or

infrared light into the eye and capturing an image of the retina.

Since it is protected in the eye itself, and is not easy to change or replicate the

retinal vasculature, this is considered as one of the most secure biometric traits.

Retina based systems are used for high security applications, such as access to

prisons.

Face: The importance of facial features for human recognition cannot be over-

stated. Facial images are the most common biometric characteristic used by humans

to perform personal recognition. This is a non intrusive and suitable trait to perform

covert recognition.

Although performance of commercially available systems is reasonable, there is

still significant room for improvement, since false rejection rate is about 10% and

the false accept rate is about 1%. These systems face strong difficulties when the

faces are captured under different angles and uncontrolled ambient illumination.

Ear: Using ears for the recognition of individuals has been interesting for the

research community for, at least, 100 years. During crime scene investigation, ear

marks are often used for identification in the absence of valid fingerprints.

Commonly, there are at least three methods for ear recognition: taking a photo of

an ear, taking earmarks by pushing ear against a flat surface and taking thermogram

pictures of the ear. The requirement of users cooperation is needed, in order to

acquire acceptable ear images. Apart from this, rotation, even small, is a common

problem.

Facial Thermogram: It is possible to capture the pattern of heat radiated

by the human body with an infrared camera. That pattern is considered to be

unique for each person, enabling its potential use for biometric purposes. It was

observed that the capturing of face images through an infra-red camera produces

a unique facial signature when heat passes through the facial tissue and is emitted

from the skin. These facial signatures are often called facial thermograms. It is

claimed that a face thermogram is unique to each individual and is less vulnerable

to disguises. Face thermograms may depend heavily on a number of factors such as

the emotional state of the subjects, or body temperature, and like face recognition,

face thermogram recognition is view-dependent [6].

Hand Vein: It is believed that the pattern of blood veins is unique to every

individual, even among identical twins. Moreover, palms have a broad and compli-

cated vascular pattern that has minor variations over lifetime and is not considered

intrusive. As veins are internal and have a wealth of differentiating features, at-

tempts to forge an identity are extremely difficult, thereby enabling a high level of
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security. Among the disadvantages, the high level of cooperation required and the

fact that it demands physical contact between the subject and some part of the

system.

Palmprint: Similarly to the widely used fingerprints, the palms of the human

hands contain unique patterns of ridges and valleys. Since a palm is larger then a

finger, a palmprint is expected to be even more distinguishable than a fingerprint.

Palmprint recognition offers promising future for medium-security access control

system, although it is not as stabilized and matured as the fingerprint technology.

Compared to other biometric traits, the facts that a higher level of cooperation is

demanded to users and the required physical contact between the users and the

capturing device can be regarded as disadvantages.

Behavioral Traits

Behavioral biometrics are more concerned with how you do something, rather than

just a static measurement of a specific body part. Some of the behavioral biometrics

in use include these:

Signature: Signature can be regarded as unique and results from both behav-

ioral and hand geometry variations associated to each subject. The way a person

signs his or her name is known to be characteristic of that individual since centuries,

although the analysis of the signature dynamics is recent.

There are two major strategies to perform signature recognition: image-based

and dynamics analysis. The first approach is the most classical and is based on

the visual appearance of the signature. The latter analyzes both speed, direction

and pressure of writing, stroke order and its major weak point results of the specific

hardware dependence.

Keystroke dynamics: It is believed that each person types on a keyboard in

a distinguishable way, such that the analysis of the different rhythms that a subject

types in the keyboard can be used for its recognition.

This technology examines either dynamics as speed and pressure, the length of

time each key is held down, the time elapsed between hitting certain keys and the

tendencies to switch between a numeric keypad and keyboard numbers. The main

advantage of the use of keystroke-based biometrics is its potential for continuous

monitoring.

Voice: Oppositely to the majority of the biometric traits, that are image-based,

voice possesses the singularity of dealing with acoustic information. The most rele-

vant features of a subjects vocal pattern are determined by physical characteristics

as the vocal tracts, mouth, nasal cavities and lips shape. These are low varying fea-
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tures over adult lifetime, although the individual behavior and social environments

can highly influence the subjects voice.

Speech-based authentication is currently restricted to low-security applications

because of the high variability in an individuals voice and poor accuracy performance

of typical speech-based authentication systems.

Gait: The human gait is a periodic activity with each gait cycle covering two

strides: the left foot forward and right foot forward strides. Each stride spans the

double-support stance to the legs-together stance as the legs swing past each other

and back to the double-support stance. Potential information in the basis of gait

biometrics can derive from two aspects: shape and dynamics.

Gait-based biometric systems tend to present high false rejection rates due to to

changes in the walking surface, walking speed. Also, since video-sequence is used

to capture the required data, it is considered as one of the most computationally

expensive methods.

1.1.4 Comparison Between the Most Common Biometrics

Traits

Biometric systems can be evaluated regarding seven parameters: universality, unique-

ness, permanence, collectability, performance, acceptability and circumvention [7].

These parameters are also called as seven pillars of biometric wisdom.

∙ Universality: All human beings are endowed with the same physical charac-

teristics - such as fingers, iris, face, DNA which can be used for identification.

∙ Uniqueness: For each person these characteristics are unique, and thus con-

stitute a distinguishing feature.

∙ Permanence: These characteristics remain largely unchanged throughout a

person’s life.

∙ Collectability: A person’s unique physical characteristics need to be collected

in a reasonably easy way for quick identification.

∙ Performance: The degree of accuracy of identification must be quite high

before the system can be operational.

∙ Acceptability: Applications will not be successful if the public offers strong

and continuous resistance to biometrics.
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∙ Circumvention: In order to provide added security, a system needs to be harder

to circumvent than existing identity management systems.

Table 1.1 shows comparison of most common biometric traits depending upon

above parameters.

Trait
Unique-
ness

Univer-
sality

Perman-
ence

Collect-
ability

Perform-
ance

Accept-
ability

Circum-
vention

DNA 87 % 95 % 94 % 19 % 19 % 15 % 55 %

Ear 46 % 58 % 85 % 50 % 53 % 100 % 50 %

Face 44 % 92 % 50 % 84 % 25 % 99 % 37 %

Fingerprint 78 % 47 % 91 % 62 % 98 % 49 % 71 %

Gait 25 % 50 % 25 % 100 % 21 % 100 % 50 %

Hand 54 % 57 % 54 % 78 % 50 % 67 % 59 %

Iris 96 % 93 % 97 % 62 % 98 % 50 % 95 %

Keystroke 17 % 23 % 28 % 56 % 25 % 67 % 50 %

Retina 94 % 86 % 66 % 29 % 98 % 23 % 100 %

Signature 35 % 39 % 34 % 83 % 23 % 97 % 33 %

Voice 39 % 49 % 31 % 59 % 23 % 99 % 33 %

Table 1.1: Comparison between the most common biometric traits.

1.1.5 Factors that Influence the Biometric Traits

Every biometric system depends on the features, whether genotypic or randotypic

or behavioral. Genotypic refers to the traits that are defined by the genetic makeup

of the individual and do not change over time. Phenotypic refers to the actual

expression of a feature, through the interaction of genotype, its development and

surrounding environment.behavioral traits are those aspects that a subject develops

through training or repeated learning. Table 1.2 shows the comparison of various

biometric system based on these factors.The origin of the biometric traits is relevant

due to its influence on the system’s error rates. For instance, the dynamics of the

behavioral features over time strongly increases the false rejection rates.
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Trait Genotypic Randotypic Behavioral

DNA 48 % 48 % 4 %

Ear 40 % 40 % 20 %

Face 40 % 40 % 20 %

Fingerprint 25 % 62.5 % 12.5 %

Gait 30 % 10 % 60 %

Hand Geometry 25 % 62.5 % 12.5 %

Iris 1 % 98 % 1 %

Keystroke 1 % 1 % 98 %

Retina 1 % 98 % 1 %

Signature 1 % 1 % 98 %

Voice 42 % 29 % 29 %

Table 1.2: Factors of influence of the biometric traits.

1.1.6 Biometric Functionalities

The functionalities provided by a biometric system can be categorized as verification

and identification. Figure 1.4 shows the enrollment and authentication stages of a

biometric system operating in the verification and identification modes.

In verification, the user claims an identity and the system verifies whether the

claim is genuine, i.e., the system answers the question “Are you who you say you

are?”. In this scenario, the query is compared only to the template corresponding to

the claimed identity. If the users input and the template of the claimed identity have

a high degree of similarity, then the claim is accepted as “genuine”. Otherwise, the

claim is rejected and the user is considered an “impostor”. Verification is typically

used for positive recognition, where the aim is to prevent multiple people from using

the same identity.

Identification functionality can be classified into positive and negative identifi-

cation. In positive identification, the user attempts to positively identify himself to

the system without explicitly claiming an identity. A positive identification system

answers the question “Are you someone who is known to the system?” by deter-

mining the identity of the user from a known set of identities. In contrast, the

user in a negative identification application is considered to be concealing his true

identity from the system. Negative identification is also known as screening and
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Figure 1.4: Enrollment and recognition (verification and identification) stages of a
biometric system..

the objective of such systems is to find out “Are you who you say you are not?”.

Screening is often used at airports to verify whether a passengers identity matches

with any person on a “watch-list”. Screening can also be used to prevent the issue

of multiple credential records (e.g., drivers licence, passport) to the same person.

Negative identification is also critical in applications such as welfare disbursement

to prevent a person from claiming multiple benefits under different names. In both

positive and negative identification, the users biometric input is compared with the

templates of all the persons enrolled in the database and the system outputs either

the identity of the person whose template has the highest degree of similarity with

the users input or a decision indicating that the user presenting the input is not an

enrolled user.
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1.1.7 Performance of a Biometric System

Unlike password-based systems, where a perfect match between two alphanumeric

strings is necessary in order to validate a users identity, a biometric system seldom

encounters two samples of a users biometric trait that result in exactly the same

feature set. This is due to imperfect sensing conditions (e.g., noisy fingerprint due

to sensor malfunction), alterations in the users biometric characteristic (e.g., respi-

ratory ailments impacting speaker recognition), changes in ambient conditions (e.g.,

inconsistent illumination levels in face recognition) and variations in the users inter-

action with the sensor (e.g., occluded iris or partial fingerprints). Thus, seldom do

two feature sets originating from the same biometric trait of a user look exactly the

same, fact, a perfect match between two feature sets might indicate the possibility

that a replay attack is being launched against the system. The variability observed

in the biometric feature set of an individual is referred to as intra-class variation,

and the variability between feature sets originating from two different individuals

is known as inter-class variation. A useful feature set exhibits small intra-class

variation and large inter-class variation.

The degree of similarity between two biometric feature sets is indicated by a

similarity score. A similarity match score is known as a genuine or authentic score

if it is a result of matching two samples of the same biometric trait of a user.

It is known as an impostor score if it involves comparing two biometric samples

originating from different users. An impostor score that exceeds the threshold �

results in a false accept (or, a false match), while a genuine score that falls below

the threshold � results in a false reject (or, a false non-match). The False Accept

Rate (FAR) (or, the False Match Rate (FMR)) of a biometric system can therefore

be defined as the fraction of impostor scores exceeding the threshold �. Similarly,

the False Reject Rate (FRR) (or, the False Nonmatch Rate (FNMR)) of a system

may be defined as the fraction of genuine scores falling below the threshold �. The

Genuine Accept Rate (GAR) is the fraction of genuine scores exceeding the threshold

�. Therefore, GAR = 1 - FRR Regulating the value of � changes the FRR and the

FAR values, but for a given biometric system, it is not possible to decrease both

these errors simultaneously.

The FAR and FRR at various values of � can be summarized using a Detection

Error Tradeoff (DET) curve that plots the FRR against the FAR at various thresh-

olds on a normal deviate scale and interpolates between these points (Figure 6.2)).

When a linear, logarithmic or semi-logarithmic scale is used to plot these error rates,

then the resulting graph is known as a Receiver Operating Characteristic (ROC)
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curve . In many instances, the ROC curve plots the GAR (rather than the FRR)

against the FAR.

Figure 1.5: The graph in (a) shows a DET curve that plots FRR against FAR in
the normal deviate scale. In (b) a ROC curve plots FRR against FAR in the linear
scale.

The performance of a biometric system may also be summarized using other

single-valued measures such as the Equal Error Rate (EER) and the d-prime value.

The EER refers to that point in a DET curve where the FAR equals the FRR; a

lower EER value, therefore, indicates better performance. The d-prime value (d’)

measures the separation between the means of the genuine and impostor probability

distributions in standard deviation units and is defined as, d′ = (mean1−mean2)√
( std1

2+std22

2
)

where

the mean1, mean2 and std1, std2 are the means and standard deviations, respec-

tively, of the genuine and impostor distributions. A higher d-prime value indicates

better performance.
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1.2 Iris Recognition

This section is totally related with the utilization of the iris for biometric purposes.

We start by an overall description of the eyes anatomy followed by the identification

of the most important regions of the human iris. Further, we identify the most

typical stages of common iris recognition proposals and describe the most relevant

approaches to each of these stages.

1.2.1 Eye and Iris Anatomy

In this sub-section we start with the description of the human eye anatomy, followed

by a highly detailed description of the iris, which is the most relevant part of the

eye.

Eye Anatomy

A schematic drawing of the human eye is shown in Fig 1.6 [8] The anterior portion

of the eye consists of the cornea, iris, pupil, and crystalline lens. The pupil serves

as an aperture which is adjusted by the surrounding iris, acting as a diaphragm

that regulates the amount of light entering the eye. Both the iris and the pupil are

covered by the convex transparent cornea. Together with the crystalline lens, the

cornea is responsible for the formation of the optical image on the retina.

Ciliary muscle actions cause the zonular fibers to relax or tighten and thus pro-

vide accommodation, the active function of the crystalline lens. This ability to

change its curvature, allowing objects at various distances to be brought into sharp

focus on the retinal surface. The aqueous humor fills the anterior chamber between

the cornea and iris, and also fills the posterior chamber that is situated between the

iris and the zonular fibers and crystalline lens. The aqueous humor is responsible

for maintaining the intraocular pressure and thereby helps the eyeball maintain its

shape. Moreover, this clear watery fluid nourishes the cornea and crystalline lens.

Taken all together, with its refracting constituents, self-adjusting aperture, and fi-

nally, its detecting segment, the eye is very similar to a photographic camera. The

film of this optical system is the retina, the multilayered sensory tissue of the poste-

rior eyeball onto which the light entering the eye is focused, forming a reversed and

inverted image. External to the retina is the choroid, the layer that lies between

retina and sclera. The choroid is primarily composed of small arteries and veins.

As it consists of numerous blood vessels and thus contains many blood cells, the

choroid supplies most of the back of the eye with necessary oxygen and nutrients.
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The sclera is the external fibrous covering of the eye. Iris is described in more detail

in the following section due to their major role in biometric applications.

Figure 1.6: Schematic drawing of the human eye.

Iris Anatomy

Illustrated by figure 1.7 the iris consists of two major regions: the pupillary and the

ciliary zone. The pupillary zone is the inner portion of the iris whose edges form the

pupillary iris border. The ciliary zone is the outer portion of the iris, which extends

itself into the iris origin in the ciliary body. The region that separates the pupillary

and scleric portions is designated as the collarette. Two muscles, the dilator and the

sphincter muscles, control the size of the iris to adjust the amount of light entering

the pupil.

The iris begins to form during the third month of gestation and the structure

is complete by the eight month, although pigmentation continues into the first year

after birth. The visible features of the iris arise in the trabeculum, which is a

meshwork of connective tissues with arching ligaments, crypts, contraction furrows,

a corona and pupillary frill, coloration and freckles. Although the anterior layer

covering the trabecular framework creates the predominant iris texture seen with
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Figure 1.7: Morphology of the human iris.

visible light, additional discriminating information can be given by the location of

all of these sources of radial and angular variation. Together, as mentioned by [9],

they provide a distinguishable and unique signal.

The texture and minutia of the iris is believed to have high random morpho-

genesis and no genetic penetrance in its expression. Past studies about the iris

texture concluded that the inter-subject variability of its pattern spans about 250

degrees-of-freedom and have an entropy of about 3.2 bits per square-millimeter [9].

These biological characteristics of the iris patterns turned it as one of the most

suitable traits for biometric purposes. As discussed in the comparison between the

most common traits, iris is generally accepted as one of the most promising biomet-

ric traits and is the subject for the development and proposal of many biometric

recognition algorithms. In the following section, we detail the typical iris recogni-

tion stages with emphasis to the almost standard Daugmans recognition method

that, apart from being the first proposed, is the basis for the large majority of the

deployed and commercial iris recognition systems.

1.2.2 Typical Stages of Iris Recognition

Figure 1.8 illustrates the typical stages of iris recognition systems. The initial stage

deals with iris segmentation. This process consists in localizing the iris inner (pupil-

lary) and outer (scleric) borders, assuming either circular or elliptical shapes for

both of the borders.
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In order to compensate the variations in the pupil size and in the image capturing

distances, it is common to translate the segmented iris region into a fixed length and

dimensionless polar coordinate system. This stage is usually accomplished through

the method proposed by Daugman [2].

Regarding feature extraction, iris recognition approaches can be divided into

three major categories: phase-based methods (e.g., [2] ), zero-crossing methods (e.g.,

[10]) and texture analysis based methods (e.g., [11]).

Finally, the comparison between iris signatures is made, producing a numeric

dissimilarity value. If this value is higher than a threshold, the system outputs a

non-match, meaning that each signature belongs to different irises. Otherwise, the

system outputs a match, meaning that both signatures were extracted from the

same iris.

Figure 1.8: Typical stages of the iris recognition.

1.2.3 Iris Segmentation

In 1993, J. Daugman [2] presented one of the most relevant methods, constituting

the basis of the majority of the functioning systems. Regarding the segmentation

stage, this author introduced an integro-differential operator to find both the iris

inner and outer borders. This operator remains actual and was proposed in 2004

with minor differences by Nishino and Nayar [12].

Similarly, Camus and Wildes [13] and Martin-Roche et al. [14] proposed integro-

differential operators that search the N3 space, with the objective of maximizing
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the equations that identify the iris borders.

Wildes [11] proposed iris segmentation through a gradient based binary edge-

map construction followed by circular Hough transform. This is the most common

method, that has been proposed with minor variants by Cui et al. [15], Huang et

al. [16], Kong and Zhang [17], Ma et al. [18], [19] and [20].

Morphologic operators were applied by Mira and Mayer [21] to obtain iris bor-

ders. They detected the pupillary and scleric borders by applying thresholding,

image opening and closing.

1.2.4 Iris Normalization

Due to the varying size of the pupil and of the distance and angle of the image

capturing framework, the size of the captured irises can have high variations, in-

creasing the complexity of the recognition task. Robust representations for pattern

recognition must be invariant to changes in the size, position, and orientation of

the patterns. In the iris recognition compass, this requires a representation of the

iris data invariant to the dimension of the captured image. This is influenced by

the distance between the eye and the capturing device, by the camera optical mag-

nification factor and by the iris orientation, caused by torsional eye rotation and

camera angles. As described in [1], the invariance to all of these factors can be

achieved through the translation of the captured data into a double dimensionless

polar coordinate system. As figure 1.9 illustrates, this translation process is based

both in polar (�) and radial (r) variables.

The rubber sheet model assigns to each point on the iris, regardless of its size

and pupillary dilation, a pair of real coordinates (r, �), where r is on the unit interval

[0, 1] and � is an angle in [0, 2�]. The remapping of the iris image I(x, y) from raw

cartesian coordinates (x, y) to the dimensionless non concentric polar coordinate

system (r, �) can be represented as:

I(x(r, �), y(r, �))→ I(r, �) (1.1)

where x(r, �) and y(r, �) are defined as linear combinations of both the set of

pupillary boundary points (xp(�), yp(�)) and the set of limbus boundary points along

the outer perimeter of the iris (xs(�), ys(�)) bordering the sclera, which are detected

in the iris segmentation stage, as:
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Figure 1.9: Normalization of the iris image through the Daugman rubber sheet.

x(r, �) = (1− r) ∗ xp(�) + (1− r) ∗ xs(�) (1.2)

y(r, �) = (1− r) ∗ yp(�) + (1− r) ∗ ys(�) (1.3)

1.2.5 Feature Extraction

As stated above, from the viewpoint of feature extraction, recognition approaches

can be divided into three major categories: phase-based methods (e.g., Daugman

[2]), zero-crossing methods (e.g., Boles and Boashash [10] and Roche et al. [14]) and

texture analysis based methods (e.g., Wildes [11], and Ma et al. [22]).

Daugman [2] uses multiscale quadrature wavelets to extract texture phase infor-

mation and obtain an iris signature with 2048 binary components. Once again, this

proposal acted as basis for others with minor differences, as Ma et al. [22].

To characterize the iris texture, Boles and Boashash [10] computed the zero-

crossing representation of a 1D wavelet at different resolutions of concentric circles.

Wildes [11] proposed the characterization of the iris texture through a Laplacian

pyramid with 4 different levels (scales).

One of the most common approaches consist in the dyadic wavelet decomposition

either using Haar, Mallat or other mother wavelets. This can be found in several

proposals, among which are Ali and Hassanien [23], Ma et al. [19].
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1.2.6 Feature Comparison

Although the method chosen to compare between iris signature is highly conditioned

by the feature extraction strategy, the feature comparison is generally performed

through the use of distance metrics: Hamming (e.g., Daugman [18], Tisse et al. [24]),

Euclidean (e.g., Huang et al. [25]), Weighted Euclidean (e.g., Zhu et al. [26] and Ma

et al. [18]) or methods based on signal correlation (Wildes [11]).

1.2.7 Some Relevant Iris Recognition System

1.2.8 Daugman’s Method

Iris segmentation: The author describes an integro-differential operator that searches

for the maximal difference between the average intensity of circumferences with con-

secutive radius values.This operator is described in section

Normalization: After the segmentation of both iris borders, to compensate the

variations in the size of the pupil, we translated the images to dimensionless polar

coordinate system through a process known as the Daugman Rubber Sheet [2],

which is described in section

Feature Extraction: The iris data encoding was accomplished through the use

of two dimensional Gabor filters. These spatial filters have the form:

G(x, y) = e−�[(x−x0)
2/�2+(y−y0)2/�2]e−2�i[u0(x−x0)+v0(y−y0)] (1.4)

where (x0,y0) defines the position in the image (�,�) is the filter width and

length and (u0,v0) specify the modulation, with spatial frequency w0 = 2
√
u20 + v20

and direction �0 = arctan( v0
u0

) The real parts of the 2-D Gabor filters are truncated

to be zero volume and achieve illumination invariance. For each resulting bit the

sign of the real and imaginary parts from quadrature image projections is analyzed

and, through quantization, assigned binary values: 1 and 0 respectively for positive

and negative projection values.

Feature Comparison: The feature extraction binarization process allows the uti-

lization of the Hamming distance as the similarity measure for two iris signatures.

Given two binary sets with N bits : A = {a1, a2, ...aN} and B = {b1, b2, ...bN} the

Hamming distance is:

HD(A,B) =
1

N
∗

N∑
i=1

ai
⊗

bi (1.5)

being a
⊗

b the logical XOR operation. Thus, for two completely equal and different
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signatures, the value of the Hamming distance will be respectively 0 and 1.

1.2.9 Wilde’s Method

Wildes system [11] is also a patented iris recognition system. It uses the gradient-

based Hough transform to decide the two circular boundaries of an iris. It includes

two steps. First a binary edge map is generated by using a Gaussian filter. Then,

votes in a circular Hough space are analyzed to estimate the three parameters of

one circle (x0, y0, r). A Hough space is defined as

H(x0, y0, r) =
∑
i

ℎ(xi, yi, x0, y0, r) (1.6)

where (xi, yi) is an edge pixel and

ℎ(xi, yi, x0, y0, r) =
{

1 if (xi, yi) is on circle (x0, y0, r)
0 otℎerwise

The location (x0, y0, r) with the maximum value of H(x0, y0, r) is chosen as the

parameter vector for the strongest circular boundary.

Wildes system models the eyelids as parabolic arcs. The upper and lower eyelids

are detected by using a Hough transform based approach similar to that described

above. The only difference is that it votes for parabolic arcs instead of circles.

Wildes system utilizes a Laplacian pyramid decomposition to encode the iris texture

patterns. It uses normalized correlation to determine the similarity of two iris codes.

The final decision is obtained from a Fisher linear discriminant based on the strength

of match of each frequency band. A 100% verification accuracy was claimed when

testing on 600 iris images (60 different irises). The testing iris dataset is not publicly

available.

1.2.10 Other Methods

The algorithm of Boles and Boashash [10] extracts a set of one dimensional signals

from the iris image using the intensity values on a set of circular contours centered

at the pupil center, which is located using edge detection techniques. Then the set

of one dimensional signals is further encoded by using a zero crossing transformation

at different resolution levels. When calculating the overall dissimilarity between two

iris codes, it uses the average of the dissimilarity at each resolution level. A 100%

verification and identification accuracy was reported with the experiments conducted

on 11 iris images. The source of the testing iris images was not indicated.
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In an algorithm proposed by Ma et al. [19], the iris images are projected to

the vertical and horizontal directions to estimate the center of the pupil. This saves

time in searching for the iris boundaries. After normalizing the located iris patterns,

the image contrast is enhanced by subtracting estimated background illumination.

When extracting the iris patterns, a filter modulated by a circularly symmetric

sinusoidal function is employed. Instead of using the whole iris image, their region

of interest is constrained to the area close to the pupil because in this area the pupil

texture is claimed to be more abundant. By doing this, they avoid the eyelid and

eyelash noise. Their representation of the iris is a feature vector of length 1,536

bits. A Fisher linear discriminant is used to reduce the dimension of the feature

vector. The minimum distance classifier is utilized in classification. The algorithm

was tested on the CASIA version 1 dataset [27]. The reported identification rate is

99.43%, and the FAR is 0.001% while the FRR is 1.29%.

Table 1.3 shows comparison of some few iris recognition techniques

Year Author Localization Feature Extraction Matching

1993
Daugman
[2]

Integro differential
operator (IDO)

2D Gabor trans-
form

Hamming dis-
tance (HD)

1997 Wildes [11]
Circular Hough
Transform (CHT)

LOG filters
Fisher discrimi-
nant analysis

1998 Boles [10]
Edge and contour
detection

Zero crossings of
WT

Dissimilarity
function

2002 Tisse [24] IDO Hilbert transform HD

2002 Li Ma [22] Hough Transform
Multiple Gabor fil-
ters and wavelet
transform

Weighted Eu-
clidean distance

2003 Li Ma [19] HT
Even symmetric
gabor filters

Similarity mea-
sures

2003 Masek [28]
Edge detection and
HT

1D log-Gabor fil-
ters

HD

2004 Li Ma [20]
Edge detection and
HT

Key local varitions
using WT

Exclusive OR
operation

2006 Proenca [4]
Canny edge detec-
tor and HT

Fuzzy clustering
Multiple signa-
tures

2006
Abhyankar
[29]

Active shape mod-
els

Biorthogonal WT HD

2007 Monro [30] HT DCT HD

Table 1.3: Summary of Iris recognition techniques.
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Chapter 2

Iris Image Databases

In this chapter we describe the main characteristics of the public and freely available

iris image databases for biometrics purposes.

2.1 Public and Free Databases

The biometrics research and development demands the analysis of human data.

Obviously, it is unrealistic to perform the test of algorithms in data captured on-

the-fly, due to the enormous uneasiness that this would imply. Moreover, the fair

comparison between recognition methods demands similar input data to valorize and

contextualize their results. Therefore, when it comes to the test of recognition meth-

ods, standard biometric databases assume high relevance and become indispensable

to the development process.

2.1.1 BATH Database

The University of Bath (BATH) iris image database is constantly growing and at

present contains over 16000 iris images taken from 800 eyes of 400 subjects. It

results of a project which aims to build an “high quality iris image resource” [31].

The majority of the database comprises images taken from students and staff of

the University of Bath Images from the BATH database contain almost exclusively

noise factors related with iris obstructions (due to eyelids and eyelashes), as shown

in figure 2.1

2.1.2 CASIA Database

Iris recognition has been an active research topic of the Institute of Automation

from the Chinese Academy of Sciences [27]. Having concluded about a lack of iris
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Figure 2.1: Examples of iris images from the BATH database.

data for algorithm testing, they developed the CASIA image database. Apart from

being the oldest, this database is clearly the most known and widely used by the

majority of the researchers.

CASIA iris image database [27] (version 1,2,3) the CASIA v.1 database includes

756 iris images from 108 eyes, hence 108 classes. For each eye, 7 images are captured

in two sessions, where three samples are collected in the first and four in the second

session. Similarly to the above described database, its images were captured within

an highly constrained capturing environment, which conditioned the characteristics

of the resultant images. They present very close and homogeneous characteristics

and their noise factors are exclusively related with iris obstructions by eyelids and

eyelashes. Moreover, the postprocess of the images filled the pupil regions with

black pixels, which some authors used to facilitate the segmentation task. From our

viewpoint, this significantly decreased the utility of the database in the evaluation of

robust iris recognition methods. fig 2.2 shows some images from CASIA database.

Figure 2.2: Examples of iris images from the CASIA database.

2.1.3 ICE Database

The Iris Challenge Evaluation (ICE) is a contest designed to measure the accuracy

of the underlying technology that makes iris recognition possible. Its goals are

to promote the development and advancement of iris recognition and assess the

technologys current level of performance. The ICE [32] database is comprised of 2954

images, with a variable number of images per subject. Similarly to the remaining

public iris databases, its images were captured having quality as the main concern
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and clearly simulate the users cooperation in the image capturing.fig 2.3 shows some

images from ICE database.

Figure 2.3: Examples of iris images from the ICE database.

2.1.4 MMU Database

The Multimedia University3 has developed a small data set of 450 iris images (MMU)

[33]. They were captured through one of the most common iris recognition cameras

presently functioning (LG IrisAccess R 2200). This is a semi-automated camera

that operates at the range of 7-25 cm. Further, a new data set (MMU2) comprised

of 995 iris images has been released and another common iris recognition camera

(Panasonic BM-ET100US Authenticam) was used. The iris images are from 100

volunteers with different ages and nationalities. They come from Asia, Middle East,

Africa and Europe and each of them contributed with five iris images from each

eye. Obviously, the images are highly homogeneous and their noise factors are

exclusively related with small iris obstructions by eyelids and eyelashes. fig 2.4

shows some images from MMU database.

Figure 2.4: Examples of iris images from the MMU database.

2.1.5 UPOL Database

The UPOL [34] iris image database was built within the University of Palackeho and

Olomouc 4. Its images have the singularity of being captured through an optometric

framework (TOPCON TRC50IA) and, due to this, are of extremely high quality and

suitable for the evaluation of iris recognition in completely noise-free environments.
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The database contains 384 images extracted from both eyes of 64 subjects (three

images per eye). As can be seen in figure 3.5, its images have maximum homogeneity

and inclusively the iris segmentation is facilitated by the dark circle that surrounds

the region corresponding to the iris. Obviously, these characteristics make this

database the less appropriate for the non-cooperative iris recognition research. fig

2.5 shows some images from UPOL database.

Figure 2.5: Examples of iris images from the UPOL database.

2.1.6 IITD Database

This iris image database mainly consists of the iris images collected from the students

and staff at IIT Delhi, India. This database has been acquired in the Biometrics

Research Laboratory during January - July 2007 using JIRIS, JPC1000, digital

CMOS camera. The acquired images were saved in bitmap format. The database

of 2240 images is acquired from 224 different users and made available freely to

the researchers. All the subjects in the database are in the age group 14-55 years

comprising of 176 males and 48 females. The resolution of these images is 320 x 240

pixels and all these images were acquired in the indoor environment.fig 2.6 shows

some images from IIT,Delhi database.

Figure 2.6: Examples of iris images from the IITD database.

2.1.7 Publicly Available Iris Image Databases Information

Table 2.1 shows the information about publicly available iris image Databases. For

performance evaluation of our iris recognition system we have performed experimen-

tation mainly on three databases CASIA v1, MMU, IITD.
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Database
Number
of irises

Number
of im-
ages

Camera used How to obtain

CASIAv1 108 756 CASIA camera www.cbsr.ia.ac.cn/Databases.htm

CASIAv3 1500 22051 CASIA OKI irispass-h www.cbsr.ia.ac.cn/Databases.htm

ICE2005 244 2953 LG2200 Email -ice@nist.gov

ICE2006 480 60000 LG2200 Email -ice@nist.gov

MMU1 90 450 LG IrisAccess pesona.mmu.edu.

MMU2 199 995 Panasonic BM-ET100 ccteo@mmu.edu.my

UBIRIS 241 1877 Nikon E5700 iris.di.ubi.pt

Univ of
Bath

800 16000 ISG LightWise Fax to www.bath.ac.uk

UPOL 128 384 SONY DXC www.inf.upol.cz/iris

WVU 488 3099 OKI irispass-h arun.ross@mail.wvu.ed

IITD 224 2240 JIRIS, CMOS http://web.iitd.ac.in

Table 2.1: Publicly available iris image Databases Information.

2.1.8 Attributes of Iris Images from Available Databases

Table 2.2 shows attributes of images from publicly available iris image Databases

i.e size, iris radius, noise etc.

Iris Database Image Size,pix Iris Radius,pix Pupil radius,pix Noise%

BATH 1280×960 232 101 6.29

CASIA 320×280 102 37 12.72

ICE 640×480 119 54 6.70

MMU 320×240 57 21 7.83

UPOL 768×576 286 74 1.03

UBIRIS 800×600 206 45 27.62

WVU 800×600 204 54 16.10

Table 2.2: Attributes of iris images from available databases.
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Chapter 3

Iris Segmentation

Iris segmentation accomplish the job of determining the specific iris region from

an eye image, mainly the iris boundary, the pupil boundary, the upper eyelid and

lower eyelids. The artifacts could exist commonly within the iris images, such as the

eyelash occlusion, the eyelid occlusion and the image noise. A successful removal of

these artifacts generates the clean iris region for the subsequent recognition. An iris

is normally segmented by detecting its inner (pupil) and outer (limbus) boundaries.

Well-known methods such as the Integro-differential, Hough transform and active

contour models have been successful techniques in detecting the boundaries. In the

following, these methods are described and some of their weaknesses are pointed

out.

3.1 Daugman’s Integro-differential Operator

In order to localize an iris, Daugman proposed the Integro-differential operator [2].

The operator assumes that pupil and limbus are circular contours and performs as

a circular edge detector. Detecting the upper and lower eyelids are also performed

using the Integro- differential operator by adjusting the contour search from circular

to a designed arcuate [1]. The Integro-differential is defined as:

max(r, x0, y0)

∣∣∣∣G�(r) ∗ ∂

∂r

∫
r,x0,y0

I(x, y)

2�r
ds

∣∣∣∣ (3.1)

The operator pixel-wise searches throughout the raw input image, I(x,y), and obtains

the blurred partial derivative of the integral over normalized circular contours in

different radii. The pupil and limbus boundaries are expected to maximize the

contour integral derivative, where the intensity values over the circular borders would

make a sudden change. Path of the normalized contour integral is along a circular arc
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ds of radius r and center coordinates (x0,y0). The symbol ∗ denotes convolution and

G�(r) is a smoothing function such as a Gaussian of scale �. The complete operator

behaves as a circular edge detector, blurred at a scale set by � , searching iteratively

for the maximal contour integral derivative at successively finer scales of analysis

through the three parameter space of center coordinates and radius (x0,y0,r ) defining

a path of contour integration. The path of contour integration in above equation

is changed from circular to arcuate, with spline parameters fitted by statistical

estimation methods to model each eyelid boundary.

3.2 Circular Hough Transform

Hough transform is a standard image analysis tool for finding curves that can be

defined in a parametrical form such as lines, polynomials and circles. The recognition

of a global pattern is achieved using the local patterns. For instance, recognition

of a circle can be achieved by considering the strong edges in an image as the local

patterns and searching for the maximum value of a circular Hough transform.

Wildes et al. [11], Kong and Zhang [17], Tisse et al. [24] and Ma et al. [18] use

Hough transform to localize irises. The localization method, similar to Daugman’s

method, is also based on the first derivative of the image. In the proposed method

by Wildes, an edge map of the image is first obtained by thresholding the magnitude

of the image intensity gradient:

∣∇G(x, y) ∗ I(x, y)∣ (3.2)

∇ ≡ ( ∂
∂x
, ∂
∂y

) and

G(x, y) =
1

2��2
e−

(x−x0)
2+(y−y0)

2

2�2 (3.3)

G(x,y) is a Gaussian smoothing function with scaling parameter � to select the

proper scale of edge analysis. The edge map is then used in a voting process to

maximize the defined Hough transform for the desired contour. Considering the

obtained edge points as ,(xi, yi) j=1,2,.....n a Hough transform can be written as:

H(x0, y0, r) =
∑
i

ℎ(xi, yi, x0, y0, r) (3.4)

where

ℎ(xi, yi, x0, y0, r) =
{

1 if (xi, yi) is on circle (x0, y0, r)
0 otℎerwise

The limbus and pupil are both modeled as circles and the parametric function g is
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defined as:

g(xi, yi, x0, y0, r) = (xi − x0)2 + (yi − y0)2 − r2 (3.5)

Assuming a circle with the center (x0,y0) and radius r, the edge points that are

located over the circle result in a zero value of the function. The value of g is then

transformed to 1 by the h function, which represents the local pattern of the contour.

The local patterns are then used in a voting procedure using the Hough transform

H, in order to locate the proper pupil and limbus boundaries. In order to detect

limbus, only vertical edge information is used. The upper and lower parts, which

have the horizontal edge information, are usually covered by the two eyelids. The

horizontal edge information is used for detecting the upper and lower eyelids, which

are modeled as parabolic arcs.

3.3 Discrete Active Contours

Ritter et al. [35] make use of active contour models for localising the pupil in eye

images. Active contours respond to pre-set internal and external forces by deforming

internally or moving across an image until equilibrium is reached. The contour

contains a number of vertices, whose positions are changed by two opposing forces,

an internal force, which is dependent on the desired characteristics, and an external

force, which is dependent on the image. Each vertex is moved between time t and

t + 1 by

vi(t+ 1) = vi(t) +Gi(t) + Fi(t) (3.6)

where Fi(t) is the internal force, Gi is the external force and Gi(t) is the position

of vertex i. For localisation of the pupil region, the internal forces are calibrated so

that the contour forms a globally expanding discrete circle. The external forces are

usually found using the edge information. In order to improve accuracy Ritter et

al. use the variance image, rather than the edge image.

A point interior to the pupil is located from a variance image and then a discrete

circular active contour (DCAC) is created with this point as its centre. The DCAC

is then moved under the influence of internal and external forces until it reaches

equilibrium, and the pupil is localised.

3.4 Implementation

For iris segmentation we followed the following strategy:
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1. Pupil boundary detection: using binary morphology and “center of mass”

technique

2. Iris boundary detection: We used two techniques 1)Daugman’s integro-differential

operator [2] 2)Circular hough transform [11]

3. Eyelid detection: integro-differential operator with spline interpolation. [1]

3.4.1 Pupil Boundary Detection

In an iris image, the pupil typically appears as a large dark mass, the largest homo-

geneous region of dark pixels in the image. Our algorithm takes advantage of this

fact by isolating the darker regions of the image to create a binary image, and then

performing binary morphology in order to determine which region is actually the

pupil. We remark that no assumptions are made as to where the pupil lies within

the image. Also, since all of the images we consider are orthogonal (meaning the eye

peers straight into the camera, we assume for convenience that pupils (and later,

irises also) are circular. The process to detect the pupil is as follows.

In some cases, because of the illumination conditions or for other reasons, the

iris may appear darker than expected so that the boundary between pupil and iris

is not very sharp. To sharpen it, we perform adaptive histogram equalization on the

image before any segmentation processing begins. Next we use a grayscale threshold

to binarize the image; values below the threshold (we use a value of 50 for MMU,

and Casia v1 and 42 for IITD) are changed to 1, those above the threshold become

0. Then we apply binary morphology: (1) a fill, to fill in holes in the masses; (2)

an erosion, to get rid of most or all of the noise; and (3) a dilation to restore the

mass(es) after erosion. This process is displayed in Fig 3.1 If one mass remains,

this is the pupil. When two or more masses remain, which can result from a dark

eyebrow or shadow in the original image, component labeling technique is used, the

component with maximum number of pixels is preserved which is pupil portion since

most of the noise is removed in erosion.Once the pupil is determined, we compute its

“center of mass,” and its radius. (If the pupil is not circular, the radius corresponds

to the radius of the smallest circle which encloses it.) We pass the location of the

center to the iris boundary detection algorithm. For reducing the computational

complexity we have assumed that pupil and iris are cocentric but very often the

pupil center is nasal, and inferior, to the iris center [1].

figure shows the pupil boundary detection on test images from the databases

used i.e MMU,CASIA v1,and IITD.
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Figure 3.1: The pupil segmentation process (a)original image (b)adaptive histogram
equlized image (c)thresholded image (d)erosion (e)dilation (f)segmented pupil

Figure 3.2: The pupil boundary detection on test images form CASIA(left),
MMU(middle) and IITD(right).

The pupil segmentation was correct in about 98% of images with a round pupil

on all databases; in the rest of those images, the size of the pupil was overestimated

by varying amounts for all three databases. As compared to use of IDO or CHT for

pupil segmentation is computationally intensive while this approach is simple and

computationally efficient.

3.4.2 Iris Boundary Detection

For detecting iris boundary we implemented two widely used techniques

1. Integro-differential operator

2. Circular hough transform
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While implementing Daugman’s integro differential operator given by equation

3.1 for iris(limbic) boundary detection we have to make two modifications due to

1)upper and lower eyelid occlusion and 2)generally unequal left and right limbic

distances the method is restricted to just two arcs along horizontal meridian each

subtending �/4 radians (45 degrees) i.e angular arc of contour integration ds is re-

stricted in range to two opposing 90∘ cones centered on horizontal meridian since

eyelids generally obscure the upper and lower limbus of the iris. So “exploding

pie wedges” [36] search for finding maximum in the rate of change of integrated

luminance convolved with the smoothed gaussian blur as the radius of expansion

increases, the maximum in this derivative with respect to radius invariably corre-

sponds to correct left and right boundaries of the iris. fig 3.3 shows the selection of

ds for contour integration for locating the outer iris boundary.

Figure 3.3: Angular arc of contour integration ds for detection of iris boundary.

The gray scale values under the ds is summed for each increment in radius and

radius is found at which we get maximum difference in line integral value. fig 3.4

shows the iris boundary detection for test images.

Figure 3.4: Iris boundary detection using integro-differential operator.

Detecting Circles by Circular Hough Transform

The Hough transform is a mapping from the image plane onto the parameter space.

The parameter space is quantized into an accumulator array, and each accumulator

stands for the curve specified by the coordinates of the accumulator. For each edge

point on the image plane, the curves passing through the point are computed, and

the accumulators corresponding to these curves are incremented by 1. After the
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transform, the accumulator with a peak value indicates the existence of a curve,

which is specified by the coordinates of the accumulator, on the image plane.The

circle with center (a,b) and radius r is specified by the parameters (x0, y0, r0) in

the equation

(x− a) + (y − b) = r2 (3.7)

The parametric representation of the circle is

x = a+ rcos(�) y = b+ rsin(�) (3.8)

Thus the parameter space for a circle will belong toR3 whereas the line only belonged

to R2. As the number of parameters needed to describe the shape increases as well

as the dimension of the parameter space increases so do the complexity of the Hough

transform.

Figure 3.5: The parameter space used for CHT, which is voted by an edge point.

Choosing (a,b,r) as the parameters of the Hough transform, the locus of the

accumulators, in the parameter space, incremented by an edge point on the image

plane is a right circular cone (see Fig. 3.5). If there is a circle on the image plane,

all the right circular cones incremented by the edge points of the circle will intersect

at a common accumulator in the parameter space. The coordinates of this common

accumulator are the parameters of the equation for the circle on the image plane.

i.e The locus of (a, b) points in the parameter space fall on a circle of radius R

centered at (x, y). The true center point will be common to all parameter circles,

and can be found with a Hough accumulation array.
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Figure 3.6: Each point in geometric space (left) generates a circle in parameter space
(right). The circles in parameter space intersect at the (a, b) that is the center in
geometric space..

Most of the time the radius is unknown so we must know the range of radius to

search for.Our accumulator is 3D i.e for radius of range (r1, r2, ...rn) our accumulator

will be HA(:, :, ri) where i=1,...n. the radius for which we get the maximum votes is

the radius of the circle and the location of that point is nothing but the center point

in the image space. Figure 3.7 shows the circle detection using CHT. the Algorithm

can be summarized as follows:

1. Load Image.

2. Detect edges.

3. For each edge point

∙ For each value of r

(a) Draw a circle with centre in the edge point and radius r.

(b) Increment all points that the circle passes through

4. Find one or several maxima in the accumulator.

For drawing circle in discrete space, we have assumed circle to be consisting

of polygon of n no of sides preferably 600. Then using the parametric equations

of circle given by equation 3.8 we can find points on the circumference of circle,

assigning 1 to all these points draws circle on discrete space.
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Figure 3.7: Circle detection using circular hough transform (a)Image with the un-
known circle (b)Detected circle (c)Plot of Accumulator votes and radius (d)Hough
Accumulator for detected radius.

The above example of circle detection can be generalized for detecting iris bound-

ary the edge image is found by canny edge detection. The range of iris radius is

provided same as that was for IDO.

Fig 3.8 shows use of CHT for iris boundary detection for iris database image.

Figure 3.8: Iris boundary detection using Circular Hough Transform (a)aeval1.jpg
(MMU) (b)Edge image (c)Iris boundary detection (d)Hough accumulator for de-
tected radius..
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3.4.3 Upper and Lower Eyelid Detection

For upper and lower eyelid detection we followed Daugman’s approach in his paper

“How iris recognition works” [1] as shown in figure 3.9

Figure 3.9: Figure from Daugman’s paper [1] representing iris segmentation with
detected pupil, iris and eyelid boundaries.

Daugman used integro-differential operator given by equation 3.1 in which ds is

changed from circular to arcuate for detection of upper and lower eyelids and spline

interpolation with parameters fitted by standard statistical estimation [1].

Figure 3.10 and figure 3.11 shows our implementation of upper and lower eyelid

detection by using integro-differential operator. We separately detected upper and

lower eyelids, the path of contour integration used is as shown in figure. The proce-

dure is similar to finding pupil or iris boundary by IDO except the ds used. After

detection of presence of eyelid we have chosen two points heuristically from eyelid

corners and one point from the area ds preferably the midpoint and applied spline

interpolation [37].

Figure 3.10: Procedure for eyelid drawing (a)area ds used for contour integration
(b) Points for spline interpolation (c) Eyelid shape.

figure 3.12 shows the overall segmentation results similar to as that shown in

figure 3.9 on test images from the databases used.
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Figure 3.11: Detection of upper and lower eyelids for images from CASIA,MMU,
and IITD databases.

Figure 3.12: Overall segmentation results on test images from CASIA,MMU, and
IITD databases.

3.4.4 Noise Removal

With the available segmentation data it better to remove unnecessary region prior

to normalization figure 3.13 shows noise removed images Here we have cropped the

segmented iris images so that pupil center becomes geometric center of image. The

noisy regions are assigned NaN values.

Figure 3.13: Noise removed images i.e images with only iris portion.
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3.4.5 Results

The automatic segmentation model is proven to be successful. The CASIA and

MMU databases provided good segmentation, since those eye images had been taken

specifically for iris recognition research and boundaries of iris pupil and sclera were

clearly distinguished. But on IIT, Delhi database this is not the case because the

images are cropped such that iris portion is either close or outside the image bound-

aries.

The major problem faced in pupil-iris boundary is pupil deformation. Due to

simple thresholding and binary morphology the computation task is reduced drasti-

cally the only problem is when image is severely occluded by eyelids and eyelashes.

One problem faced with the implementation was that it required different pa-

rameters to be set for each database. These parameters were the radius of iris and

pupil to search for, and threshold values for creating edge maps. However, for in-

stallations of iris recognition systems, these parameters would only need to be set

once, since the camera hardware, imaging distance, and lighting conditions would

usually remain the same.

The eyelid detection system also proved quite successful, and managed to isolate

most occluding eyelid regions. One problem was that it would sometimes isolate

too much of the iris region, which could make the recognition process less accurate,

since there is less iris information. However, this is preferred over including too

much of the iris region, if there is a high chance it would also include undetected

eyelash and eyelid regions.

Tables 3.1, 3.3, 3.2 shows the overall segmentation results for CASIA, MMU and

IITD databases respectively:

Segmented Area Images
Successful
Segmentation

Partial(failed)
Segmentation

Successful
Segmentation
percentage

Pupil-center
finding

350 350 0 100%

Pupil-Iris
Boundary

350 343 7 98%

Iris-Sclera
Boundary

350 333 17 95.14%

Eyelid Boundary 350 330 20 94.28%

Table 3.1: Overall Segmentation results for CASIA.
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Segmented Area Images
Successful
Segmentation

Partial(failed)
Segmentation

Successful
Segmentation
percentage

Pupil-center
finding

175 175 0 100%

Pupil-Iris
Boundary

175 170 5 97.14%

Iris-Sclera
Boundary

175 168 7 96%

Eyelid Boundary 175 163 12 93.14%

Table 3.2: Overall Segmentation results for MMU.

Segmented Area Images
Successful
Segmentation

Partial(failed)
Segmentation

Successful
Segmentation
percentage

Pupil-center
finding

625 625 0 100%

Pupil-Iris
Boundary

625 620 5 99.20%

Iris-Sclera
Boundary

625 576 49 92.15%

Eyelid Boundary 625 564 61 90.25%

Table 3.3: Overall Segmentation results for IITD.

In the above results integro differential operator is used for iris boundary de-

tection, it is clear from the above results that the integro differential operator is

best for segmenting iris images.the only constraint is that image should have good

contrast. Although we successfully implemented circular hough transform for iris

boundary detection but our implementation takes more time and is computationally

inefficient, though we can reduce reduce the time and computation. Segmentation

results for CASIA using CHT are less due to low contrast iris-scelera boundary. For

MMU and IITD results are good.
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Chapter 4

Iris Normalization

Normalization refers to preparing a segmented iris image for the feature extraction

process. Once the iris region is successfully segmented from an eye image, the next

stage is to transform the iris region so that it has fixed dimensions in order to allow

comparisons. The dimensional inconsistencies between eye images are mainly due to

the stretching of the iris caused by pupil dilation from varying levels of illumination.

Other sources of inconsistency include, varying imaging distance, rotation of the

camera, head tilt, and rotation of the eye within the eye socket. The normalization

process will produce iris regions, which have the same constant dimensions, so that

two photographs of the same iris under different conditions will have characteristic

features at the same spatial location.

For normalization we have assumed the pupil region and iris region are concentric

i.e pupil and iris center are concentric but practically pupil region is slightly nasal

to iris region.

4.1 Iris Normalization Techniques

4.1.1 Daugman’s Rubber Sheet Model

Daugman’s normalization method transforms a localized iris texture from Carte-

sian to polar coordinates. The proposed method is capable of compensating the

unwanted variations due to distance of eye from camera (scale) and its position

with respect to the camera (translation). The Cartesian to polar transformation is

defined as:

The process is inherently dimensionless in the angular direction. In the radial

direction, the texture is assumed to change linearly, which is known as the rubber

sheet model. The rubber sheet model linearly maps the iris texture in the radial
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direction from pupil border to limbus border into the interval [0 1] and creates a

dimensionless transformation in the radial direction as well. The homogenous rubber

sheet model as shown in figure 4.1 devised by Daugman [1] remaps each point within

the iris region to a pair of polar coordinates (r,�) where r is on the interval [0,1] and

� is angle [0,2�].

Figure 4.1: Daugmans rubber sheet model.

The remapping of the iris region from (x,y) Cartesian coordinates to the nor-

malized non-concentric polar representation is modelled as-

I(x(r, �), y(r, �))→ I(r, �) (4.1)

x(r, �) = (1− r)× xp(�) + (1− r)× xi(�);
y(r, �) = (1− r)× yp(�) + (1− r)× yi(�);

where, where I(x,y) is the iris region image, (x,y) are the original Cartesian

coordinates, (r,�) are the corresponding normalized polar coordinates.(xp, yp) and

(xi, yi)are the coordinates of the pupil and iris boundaries along the � direction.

The rubber sheet model takes into account pupil dilation and size inconsistencies in

order to produce a normalized representation with constant dimensions. In this way

the iris region is modelled as a flexible rubber sheet anchored at the iris boundary

with the pupil center as the reference point.

Although the normalization method compensates variations due to scale, transla-

tion and pupil dilation, it is not inherently invariant to the rotation of iris. Rotation

of an iris in the Cartesian coordinates is equivalent to a shift in the polar coordinates.

In order to compensate the rotation of iris textures, a best of n test of agreement

technique is proposed by Daugman in the matching process. In this method, iris

templates are shifted and compared in n different directions to compensate the ro-

tational effects.
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4.1.2 Wildes Image Registration

Wildes has proposed an image registration technique for normalizing iris textures.

In this method, a newly acquired image, Ia(u, v) would be aligned with an image in

the database, Id(u, v), that the comparison is performed. The alignment process is

a transformation using a choice of mapping function, (U(x,y); V (x,y)) that would

minimize the function:∫
x

∫
y

(Id(x, y)− Ia(x− u, y − v))2dxdy (4.2)

The alignment process compensates the rotation and scale variations. The mapping

function is constrained to capture a similarity transformation of image coordinates

(x,y) to (x
′
, y
′
),i.e., (

x
′

y
′

)
=
(
x
y

)
− sR(�)

(
x
y

)
(4.3)

with s as the scaling factor and R(�) a matrix representing rotation by �. The

para- meters s and � are recovered by an iterative minimization procedure.

Wildes normalization process is based on a different approach compared to Daug-

man’s method. In this method, normalization is performed in the matching time.

Comparing to Daugman’s approach, the normalization method would be time con-

suming in identification applications. However, for verication purposes the method

is capable of compensating unwanted factors such as variations in rotation and scale.

4.1.3 Other Normalization Techniques

Lim et al. uses a method very similar to the pseudo polar transform of Daugman.

In this method, after finding the center of pupil and the inner and outer boundaries

of iris, the texture is transformed into polar coordinates with a fixed resolution.

In the radial direction, the texture is normalized from the inner boundary to the

outer boundary into 60 pixels which is fixed throughout all iris images. The angular

resolution is also fixed to a 0.8 degree over the 360 degree which produces 450 pixels

in the angular direction. Bole’s normalization technique is also similar to Daugman’s

method with the difference that it is performed at the time of matching. The method

is based on the diameter of the two matching irises. The ratio of the diameters are

calculated and the diameter of irises are adjusted to have the same diameters. The

number of samples is also fixed and it is set to a power-of-two integer in order to be

suitable for the dyadic wavelet transform.

44



4.2 Implementation

For normalization of iris regions a technique based on Daugmans rubber sheet model

was employed. The center of the pupil was considered as the reference point, a

number of data points are selected along each radial line and this is defined as the

radial resolution. The number of radial lines going around the iris region is defined

as the angular resolution. For simplicity we have assumed cocentric pupil and iris

center. The normalized pattern is created simply by transforming noise removed

iris images as shown in fig 4.2 from cartesian to polar coordinate system. We have

normalized images from CASIA database and IITD database to fixed 64 × 512

size since their iris radius is well above 100, while for MMU database image are

normalized to 30× 360 size. Another 2D array was created for marking reflections,

eyelashes, and eyelids detected in the segmentation stage. In order to prevent non-

iris region data from corrupting the normalized representation, data points which

occur along the pupil border or the iris border are discarded. As in Daugmans rubber

sheet model, removing rotational inconsistencies is performed at the matching stage

and will be discussed in the next chapter.

4.3 Results

The normalization process proved to be successful and some results are shown in

Figure 4.2

Figure 4.2: Normalized images of test images from databases.
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4.4 Image Enhancement

The normalized iris image has low contrast and may have nonuniform brightness

caused by the position of light sources. All these may affect the subsequent process-

ing in feature extraction and matching. In order to obtain a more well-distributed

texture image, we first approximate intensity variations across the whole image. The

mean of each 16 × 16 small block constitutes a coarse estimate of the background

illumination. This estimate is further expanded to the same size as the normalized

image by bicubic interpolation. The estimated background illumination as shown

in Fig. 4.3(b) is subtracted from the normalized image to compensate for a variety

of lighting conditions. Then, we enhance the lighting corrected image by means of

histogram equalization in each 32× 32 region. Such processing compensates for the

nonuniform illumination, as well as improves the contrast of the image. Fig. 4.3

shows the preprocessing result of an iris image, from which we can see that finer

texture characteristics of the iris become clearer

Figure 4.3: Image preprocessing. (a)Normalized image.(b) Estimated background
illumination. (d)Image after background substraction. (e)Normalized image after
enhancement
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Chapter 5

Feature Extraction and Matching

5.1 Feature Extraction Techniques

The iris has an interesting structure and presents plentiful texture information. So,

it is attractive to search representation methods which can capture local crucial

information in an iris. The uniqueness and variability are the key to successful

personal identifications, in order to distinguish between templates.

5.1.1 2D Gabor Filters

The Daugman system applies a series of 2D Gabor wavelets to the isolated iris

region in the normalized polar coordinates (r,�). The Gabor filter could be seen

as a Gaussian envelope multiplexed by a series of sinusoidal waves with different

scales and rotations. Here the Daugman system uses the same function to explore

the local intensity correlation of iris images in the space and frequency domains [1].

The filter wavelet is specified as:

H(r, �) = e−i!(�−�0)e−(r−r0)/�
2

e−(�−�0)/�
2

(5.1)

in which � and � are used to specify the multi-scale 2D wavelet size. ! represents

the wavelet frequency, which is inversely proportional to � and �. (r0, �0) represents

the center location of the frequency selective filter bank.A collection of feature points

are sampled from the original iris image in the Cartesian coordinates. These feature

points are mapped, or in other words, unwrapped into a matrix representation in the

normalized polar coordinates according to the Daugman rubber sheet model. Then

the set of Gabor filter banks are applied to this matrix template and the template
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is decomposed into a set of complex coefficients h at each location (r0, �0):

ℎ =

∫
r

∫
�

I(r, �)e−i!(�−�0)e−(r−r0)/�
2

e−(�−�0)/�
2

(5.2)

in which r and � represent, respectively, the dimensions along the radial and

circumferential directions in the normalized polar coordinates. The complex domain

is divided into four phases, and each phase is represented by two binary bits. After

the Gabor feature extraction, a complex feature matrix is generated from the image.

For each complex feature value h, two binary bits (ℎR;ℎI) are used to represent phase

information at the pixel location. And the binary phase pairs from the entire image

are combined into a binary feature template for pattern comparison and decision

making. The Hamming distance is calculated between two binary feature templates

to evaluate their closeness of match.

Figure 5.1: Gabor phase feature representation [1].

With different parameters selected for the Gabor decomposition, the phase en-

coding and feature extraction repeatedly process the iris region. One set of Gabor

filter bank will extract one pair of complex phasors over each feature point. With

k sets of Gabor filter banks applied to an unwrapped image template of M × N

matrix, a binary phase feature matrix of 2kM × 2kN would be extracted as the

binary iris template for the Hamming distance calculation.
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5.1.2 Laplacian of Gaussian Filter

Compared to the Gabor filter wavelets used by the Daugman system, the Wildes

system employs a Laplacian of Gaussian filter G to extract the features from the

iris image [11]. The filter G is defined as:

G =
1

��4

(
1− �2

2�2

)
(5.3)

in which � is the distance from the Gaussian center to the image point along the

radius, and � is the standard deviation of the Gaussian filter. The segmented image

I in the Cartesian coordinates is filtered with the Gaussian filter G to construct a

Laplacian pyramid. First the image I is convolved with the filter G, and then down-

sampled by 2 to generate the first filtered image g1. Subsequently, each filtered

image gk is generated by convolving the previous one gk−1 with filter G, then down-

sampled by 2, as shown in Equation 5.4

gk = (G ∗ gk−1)↑2 (5.4)

Each level of the Laplacian pyramid is generated according to Equation 5.5.

lk = gk − 4G ∗ (gk+1)↑2 (5.5)

in which lk is the ktℎ level of the Laplacian pyramid [38]. In the Wildes system,

these different levels of Laplacian pyramids are combined into the feature templates

of the iris images. During the pattern comparison, the normalized correlation is

used to compare two iris feature templates to calculate the closeness of match and

thus make the decision of classification.

5.1.3 Log-Gabor Filter

Field presented a model to explore the effectiveness in coding the information in

natural images [39]. The use of the Log-Gabor filter is examined to encode the

spatial, frequency and orientation information in an image. He pointed out that

Daugman system uses the Gabor filter for feature extraction, which is mostly efficient

in the Cartesian coordinates.

However, the unwrapping process maps the iris pixel intensities from the Carte-

sian coordinates to the normalized polar coordinates. This transfer changes the

relative spatial distribution among iris pixels, and therefore partially destroys some

of the ability of the Gabor filter in extracting and compacting the spatial and fre-
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quency information. Field proposed the Log-Gabor function to counterbalance the

effect produced by the polar-mapping. The frequency response of the Log-Gabor

function is:

G(f) = e−[log(f/f0)]
2/2[log(�/f0)]2 (5.6)

in which f0 represents the center frequency and � represents the bandwidth of

filter. With an unwrapped iris matrix representation, each row of pixel intensities

corresponds to a ring of pixels centered at the pupil center. The Log-Gabor filter

is applied to the 1D image vectors to extract the phase feature templates. Since

the normalization process is warping the iris region from the circular shape to the

rectangular matrix, or from the Cartesian coordinates to the normalized polar co-

ordinates, the spatial relationship along the concentric sampling rings is different

from the spatial relationship along the radius. As a result, 2D Gabor filter feature

extraction mechanism mixes the relative spatial relationship when it multiplexes

over the normalized polar scale. In other words, 2D Gabor filter applies a symmet-

ric Gaussian envelope to the normalized polar image representation which is not

supposed to be treated evenly between radial and circumferential directions. On

the other hand, the 1D Log-Gabor filter extracts the feature vector from each row

of the normalized matrix representation, which avoids mixing the relative position

information between the radial and the circumferential directions.

5.1.4 Zero Crossings of Wavelet Transform

In the Boles and Boashash system, the dyadic wavelet transform is applied to pre-

process the image intensity vectors, and uses the zero-crossings from the decomposed

signals as the feature vectors for pattern matching [10].

A series of virtual circles are sampled from the gray-scale intensity iris im-

ages. Each circle is centered at the centroid of the pupil and represented with a

1-dimension signal vector f(n). The iris signal vector f(n) is sampled with a resolu-

tion of N. N is chosen to be an integer square as N = 2j , to make it convenient for

the subsequent dyadic wavelet decomposition. Then, the 1-dimension image vector

f(n) is decomposed with a set of dyadic wavelets at different resolutions. The loca-

tions of the zero-crossing points are used as the feature vectors. The dyadic wavelet

transform of signal f(n) is defined as:

Wa,bf(n) =
N∑
−N

f(n)
1

a
 

(
n− b
a

)
(5.7)

50



 
(
n−b
a

)
represents the dyadic wavelet function. a is a scalar, and b is a translation

parameter to specify the size and position of the mother wavelet. The dyadic wavelet

is defined as the second derivative of smoothing function �(n), which is not specified

in the reference.

5.2 Matching Algorithms

With various feature extraction schemes, an iris image is transformed into a unique

representation within the feature space. In order to make the decision of accep-

tance or refusal, a distance is calculated to measure the closeness of match. In iris

recognition systems, such distance measures include the Hamming distance (HD),

the normalized correlation (NC) and the weighted Euclidean distance (WED).

5.2.1 Hamming Distance

The Daugman algorithm [1] calculates the difference between individual patterns

as a measure of statistical independence. With the encoded binary phase feature

vectors, the Hamming distance between any two iris templates is defined in Equation

5.8

HD =
∥(templateA ⊗ templateB) ∩maskA ∩maskB∥

maskA ∩maskB
(5.8)

in which templateA and templateB represent the two encoded iris feature matrices.

maskA and maskB are two binary masks, with the locations of the identified noise

pixels marked with binary ’0’ and the rest of the mask with binary ’1’. ⊗ is the

logical XOR operator comparing bit by bit, and ∩ is the logical AND operator

taking the common area of the valid iris regions. Therefore, the Hamming distance

calculates the pattern difference with a bit-by-bit comparison. For iris templates

from the same eye, their statistical independence and the Hamming distance tend to

approach zero, while two different iris templates tend to have a Hamming distance

of 0.5. As a result, by setting a threshold on the Hamming distance between iris

templates, a decision could be made about whether they come from the same eye

or not, thus achieving the personal identification.

5.2.2 Normalized Correlation

The Wildes system employs the normalized correlation between two encoded iris

images to measure their closeness of match. The normalized correlation is defined
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as:

NC =

∑n
i=1

∑m
j=1(p1[i, j]− u1)p2[i, j]− u2)

nm�1�2
(5.9)

in which p1 and p2 are the two encoded iris templates of size n ×m, u1 and u2

are the means of the images p1 and p2, and �1 and �2 are the standard deviations

of the images p1 and p2.

5.2.3 Weighted Euclidean Distance

The Euclidean distance is one way of dening the closeness of match between two iris

feature templates. It is calculated by measuring the norm between two vectors. For

the weighted Euclidean distance, another factor is taken into consideration because

the percentage of decision-making varies in different dimensions. Y. Zhu et al. [26]

tried to use the weighted Euclidean distance to evaluate the closeness of an unknown

iris template to a template in the existing database, defined as:

WED =
N∑
i=1

(fi − gi)2

�2i
(5.10)

in which f is the unknown iris template to be matched and g is the iris template

in the existing database to be compared with. i is used to denote the index of

features in the templates, and is the standard deviation of the itℎ feature in template

g. Similar to the Hamming distance, the weighted Euclidean distance is another

distance metric within a biometric system. In a complete system, the designer

would have to interpret the metric to achieve identification or verification. In the

Wildes algorithm, the iris template g with a minimum WED to the template f is

identified to be from the same subject.

5.3 Implementation

5.3.1 Feature Extraction

The iris has a particularly interesting structure and provides abundant texture in-

formation. So, it is desirable to explore representation method which can capture

local underlying information in an iris. From the viewpoint of texture analysis, local

spatial patterns in an iris mainly involve frequency and orientation information.

For feature extraction we have used special Gabor filter bank proposed by

B.S.Manjunath [40]. A two dimensional Gabor function g(x, y) and its Fourier
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transform G(u, v) can be written as:

g(x, y) =
1

2��x�y
exp

[
−1

2

(
x2

�2
x

+
y2

�2
y

)
+ 2�|Wx

]
(5.11)

G(u, v) = exp

{
−1

2

(
(u−W )2

�2
u

+
v2

�2
v

)}
(5.12)

where �u = 1/2��x and �v = 1/2��y Gabor functions form a complete but nonorthog-

onal basis set. Expanding a signal using this basis provides a localized frequency

description. A class of self-similar functions, referred to as Gabor wavelets in the

following discussion, is now considered. Let g(x, y) be the mother Gabor wavelet,

then this self-similar filter dictionary can be obtained by appropriate dilations and

rotations of g(x, y) through the generating function:

gmn(x, y) = a−mg(x′, y′) a > 1 m,n =integer

x′ = a−m(xcos� + ysin�), and y′ = a−m(−xsin� + ycos�), (5.13)

where � = n�/K and K is the total number of orientations. The scale factor a−m

in 5.13 is meant to ensure that the energy is independent of m.

The nonorthogonality of the Gabor wavelets implies that there is redundant in-

formation in the filtered images, and the following strategy is used to reduce this

redundancy. Let Ul, and Uℎ, denote the lower and upper center frequencies of in-

terest. Let K be the number of orientations and S be the number of scales in the

multiresolution decomposition. Then the design strategy is to ensure that the half-

peak magnitude support of the filter responses in the frequency spectrum touch each

other as shown in Fig. . This results in the following formulas for computing the

filter parameters �u, and �v, (and thus �x and �y ).

a = (Uℎ/Ul)
1/s−1, �u = (a−1)Uℎ

(a+1)
√
2ln2

,

�v = tan
( �

2k

)[
Uℎ − 2ln

(
2�2

u

Uℎ

)][
2ln2− (2ln2)2�2

u

U2
ℎ

]−1
2

(5.14)

where W = Uℎ, and m = 0, 1, ..., S - 1. In order to eliminate sensitivity of the

filter response to absolute intensity values, the real (even) components of the 2D

Gabor filters are biased by adding a constant to make them zero mean (This can

also be done by setting G(0,0) in 5.12 to zero).
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Figure 5.2 shows gabor filter dictionary dictionary design.

Figure 5.2: The contours indicate the half-peak magnitude of the filter responses in
the Gabor filter bank. With filter parameters Uℎ = 0.4, Ul = 0.05, K=6,and S=4..

Figure 5.3 shows 3D view of gabor filters in spatial domain.

Figure 5.3: A quadrature pair of 2D Gabor filters left) real component or even
symmetric filter characterized by a cosine modulated by a Gaussian right) imaginary
component or odd symmetric filter characterized by a sine modulated by a Gaussian.
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Following figures shows scale and frequency orientations of gabor filters.

Figure 5.4: Preferred spatial frequency and size of gabor filters at various scales can
be obtained figure shows gabor filters at two different scales in space and frequency
domain.

Figure 5.5: 2D Gabor filter in space and frequency domain and at various orienta-
tions (0,45,90).

Gabor filtering is done by convolution of a image with set of Gabor kernels

designed to detect certain frequencies and certain orientations. Generally the Gabor

filter bank is often composed of kernels detecting 4 different wavelengths/frequencies

at 8 different orientations from 0∘ to 180∘. The reason the orientations are only for

a half circle is, that the absolute response would be the same, and the phase would

just be rotated by 180∘. The response to each filter in the filterbank is stored and

used as part of the basis for comparison. For 4 wavelengths and 8 orientations, 32
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filter responses have to be calculated. Figure 5.6 shows response of gabor filters for

input image with 1 scale and 4 orientations.

Figure 5.6: Gabor outputs for input image at four orientations and one scale (fre-
quency).

Convolution of an image with the kernel gives a response that is proportional

to how well the local feature in the image matches the kernel. This property of

convolution is general for signal processing.

While encoding the extracted features from the gabor filter banks we tried to

address following issues for the proof of some important facts that affect performance

of iris recognition system :

1. The iris details are spread along the radial direction in the original image

corresponding to the vertical direction in the normalized image so information

density in the angular direction corresponding to the horizontal direction in

the normalized image is higher than that in other directions As a result, the

differences of orientation information among irises seem to be not significant

[19].

2. Frequency information should account for the major differences of irises from

differentpeople. In general, the majority of useful information of the iris is in

a frequency band of about three octaves [19].

3. It is desirable to obtain an iris representation invariant to translation, scale,

and rotation .

4. Dimensionality reduction has very small impact on recognition accuracy. i.e

the size of feature vector does not the affect iris recognition accuracy [19].
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As stated above, for the proof above statements we modified our feature template

as follows:

1. To ensure the first fact we used four orientations 0∘,45∘,90∘,135∘ and created

four templates in each orientation 0∘ vector corresponds to radial components

that is vertically oriented patterns, while ,90∘ corresponds to angular informa-

tion.

2. To check the effect of frequency selectivity, first we used only one scale selecting

only one particular frequency and increasing number of scales for evaluating

its significance on recognition performance.

3. To obtain an iris representation invariant to translation, scale, and rotation we

have created binary phase code which is shifted while matching for accounting

rotation invariance.

4. The output of filtering is then phase quantized to four levels using the Daug-

man method [1], with each filter producing two bits of data for each pha-

sor. The size of feature vectors are CASIA(64 × 1024), MMU(30 × 720),

IITD(64× 1024)

The feature encoding process is illustrated in Figure 5.7,

Figure 5.7: An illustration of the feature encoding process.
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Local regions of an iris are projected onto quadrature 2D Gabor wavelets, gen-

erating complex-valued coefficients whose real and imaginary parts specify the co-

ordinates of a phasor in the complex plane.The angle of each phasor is quantized

to one of the four quadrants, setting two bits of phase information. This process is

repeated all across the iris.

As shown in figure 5.7, we have created four feature vectors for each scale with

orientation selectivity of 0∘, 45∘, 90∘, 135∘ respectively. These feature vectors are

compared individually at the time of matching and their average mean is taken as

resulting hamming distance.

For comparison purpose we also tested our system using Log-Gabor filters for

feature extraction used by Masek [28], originally proposed by Field [39]. Field

suggests that that natural images are better coded by filters that have Gaussian

transfer functions when viewed on logarithmic frequency scale (Gabor functions

have Gaussian transfer functions when viewed on linear frequency scale). There

are two important characteristics to note, Firstly, Log-gabor filters always have

no DC component, and secondly, the transfer function an extended tail at the high

frequency end. Ordinary Gabor functions over represents low frequency components

and under represents high frequency components as shown in fig 5.8.

Figure 5.8: Gabor and Log-Gabor functions on logarithmic axis.

Due to singularity in the log function at the origin one cannot construct an

analytic expression for the shape of the log Gabor function in the spatial domain.

The equation of Log-Gabor filter is G(f) = e−[log(f/f0)]
2/2[log(�/f0)]2

wo is the filter’s centre frequency, �/f0) value of .74 will result in a filter bandwidth

58



of approximately one octave, .55 will result in two octaves, and .41 will produce three

octaves, so we can construct filters of arbitrary bandwidths. Figure 5.9 illustrates

the ability of the Log Gabor function to capture broad spectral information with a

compact spatial filter.

Figure 5.9: Log Gabor wavelets all tuned to the same frequency, but having band-
widths of 1, 2 and 3 octaves respectively..

For bandwidths of less than 1 octave, both Gabor and Log Gabor functions have

same shape and produce similar results [39].

5.3.2 Matching

For matching, the Hamming distance was chosen as a metric for recognition, since

bit-wise comparisons were necessary. The Hamming distance algorithm employed

also incorporates noise masking, so that only significant bits are used in calculating

the Hamming distance between two iris templates. Now when taking the Hamming

distance, only those bits in the iris pattern that correspond to ’0’ bits in noise masks

of both iris patterns will be used in the calculation. The Hamming distance will be

calculated using only the bits generated from the true iris region, and this modified

Hamming distance formula is given as :

HD =

∑N
j=1 ∥(Xj ⊗ Yj) ∩Xn′j ∩ Y n′j∥
N −

∑N
k=1Xnk ∩ Y nk

(5.15)

where Xj and Yj are the two bit-wise templates to compare, Xnj and Y nj are the

corresponding noise masks for Xj and Yj, and N is the number of bits represented

by each template.

Although, in theory, two iris templates generated from the same iris will have

a Hamming distance of 0.0, in practice this will not occur. Normalization is not
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perfect, and also there will be some noise that goes undetected, so some variation

will be present when comparing two intra-class iris templates.

In order to account for rotational inconsistencies, when the Hamming distance

of two templates is calculated, one template is shifted left and right bit-wise and

a number of Hamming distance values are calculated from successive shifts. This

bit-wise shifting in the horizontal direction corresponds to rotation of the original

iris region by an angle given by the angular resolution used. If an angular resolution

of 180 is used, each shift will correspond to a rotation of 2 degrees in the iris region.

This method is suggested by Daugman [1], and corrects for misalignments in the

normalized iris pattern caused by rotational differences during imaging. From the

calculated Hamming distance values, only the lowest is taken, since this corresponds

to the best match between two templates.

The number of bits moved during each shift is given by two times the number of

filters used, since each filter will generate two bits of information from one pixel of

the normalized region. The actual number of shifts required to normalize rotational

inconsistencies will be determined by the maximum angle difference between two

images of the same eye, and one shift is defined as one shift to the left, followed by

one shift to the right. The shifting process for one shift is illustrated in Figure 5.10

Figure 5.10: shifting process.
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Chapter 6

Experimental Results

6.1 Overview

In this chapter, the performance of the iris recognition system as a whole is exam-

ined. We have tried to verify some important facts that affect the performance of

iris recognition accuracy. For comparison purpose we have also tested our system

using LOG gabor filters for feature extraction that is widely used by researchers.

6.2 Performance Evaluation

Performance evaluation assesses accuracy and usability of biometric algorithms or

systems. Performance measures are computed for verification, identification, in

order to either discover the state-of-the-art of biometric technologies or quantify

how well a biometric system meets the requirements of specific applications.

For most biometric technologies, there are two main tasks when applying them

in practice, i.e. verification and identification. The former needs to answer “Is he

who he says he is?, while the latter cares about who is he?. According to whether the

unidentified end-user is enrolled in the system, identification is further categorized

into two types: closed-set identification and open-set identification. We have tested

our system in verification mode.

6.2.1 Performance Measures

Performance measures in biometrics define quantifiable assessments of the process-

ing speed, recognition accuracy, and other functional characteristics of a biometric

algorithm or system.
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Fundamental Performance Measures

The following measures are considered to be fundamental because they can be em-

ployed regardless of the types of applications of biometric systems. The failure-to-

enroll and failure-to-acquire rates measure the performance of the feature extracting

component, while the false match and false nonmatch rates measure that of the

matching component.

∙ FTE (failure-to-enroll rate) is the proportion of the population for whom the

system fails to complete the enrollment process. The failure-to-enroll occurs

when the user cannot present the required biometric characteristic, or when

the submitted biometric sample is of unacceptably bad quality.

∙ FTA (failure-to-acquire rate) is the proportion of verification or identification

attempts for which the system fails to capture or locate biometric samples of

sufficient quality.

∙ FNMR (false nonmatch rate) is the proportion of genuine attempt samples

falsely declared not to match the template of the same characteristic from the

same user submitting the sample.

∙ FMR (false match rate) is the proportion of zeroeffort impostor attempt sam-

ples falsely declared to match the compared nonself template.

Performance Measures for Verification System

Verification is one of the two major applications of biometrics, where the user makes

a positive claim to an identity, features extracted from the submitted biometric

sample are compared with the enrolled templates for the claimed identity, and an

accept- or reject decision regarding the identity claim is returned. In evaluating the

performance of biometric systems, the unit operation is a transaction, which can

be a single attempt but mostly consists of multiple attempts. In this aspect, the

fundamental measures, FMR and FNMR, cannot be directly applied to the overall

performance evaluation of a biometric system, and the following metrics are designed

for more general measures.

FAR is the proportion of verification transactions with truthful claims of identity

that are incorrectly denied.

FAR(percent) = 100× (Number of false acceptance)
(Total no of acceptance by system)
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FAR (false accept rate) is the proportion of verification transactions with zero-

effort wrongful claims of identity that are incorrectly confirmed.

FRR(percent) = 100× (Number of false rejections)
(Total no of rejections by system)

Other Performance Measures

Genuine score distribution and Impostor score distribution are computed and graph-

ically reported to show how the algorithm separates the two classes.

Figure 6.1: Genuine and imposter distribution examples left figure taken from Daug-
man’s paper [2] and right from A.K.Jain’s book [3].

the d’ prime value is used to discriminate between intraclass and interclass.

d′ = ∣�1−�2∣√
(�2

1+�
2
2)/2

where the �’s and �’s are the means and standard deviations, respectively, of

the genuine and impostor distributions. A higher d-prime value indicates better

performance.

EER (equal error rate) is computed as the point where FNMR=FMR. In prac-

tice, the matching score distributions are not continuous and a crossover point might

not exist. The strength of the EER is that it gives a comparison of different bio-

metric systems. That is, since biometric systems in general do not always offer the

same threshold settings, it would be difficult to compare apples to apples. Thus,

in comparing a normalized statistic like the EER, we can try to get some relative

comparison of two biometric systems.
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Graphic Performance Measures

When presenting test results, the matching or decision-making performance of bio-

metric systems are graphically represented using Detection Error Trade-off (DET),

Receiver Operating Characteristics (ROC), or Cumulative Match Characteristic

(CMC) curves. ROC curves are a traditional method for summarizing the per-

formance of imperfect diagnostic, detection, and pattern-matching systems. ROC

curves are threshold independent, allowing performance comparison of different sys-

tems under similar conditions, or of a single system under differing conditions.

ROC curves may be used to plot matching algorithm performance (1-FNMR against

FMR), end-to-end verification system performance (1-FRR against FAR).

Figure 6.2: The graph in (a) shows a DET curve (b) a ROC curve taken from [3].

The FAR and FRR at various values of thresholds can be summarized using a

Detection Error Tradeoff (DET) curve [41] that plots the FRR against the FAR at

various thresholds on a normal deviate scale and interpolates between these points.
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6.3 Databases for Evaluation

Performance measures are generally obtained by testing the biometric systems on

some database. Pure recognition of 100 percent means nothing if database is not

mentioned clearly. The database is divided into Registered(Training) and Testing

database. As stated earlier we have used CASIA v1,MMU, and IITD databse.

Except CASIA we have used 2 images for registration and 3 images for testing, for

CASIA we have used 3 images for registration and 4 images for testing.

Total comparisons = no of images from registered database × no of images from

testing database.

Genuine vector = no of images for registration from one class × no of images for

testing from one class × no of classes.

Table 6.1 shows the other details.

Figure 6.3: Samples taken from CASIA database for performance evaluation .

Database Classes Registered Testing Comparisons Genuine Vector

CASIA 50 150 200 30000 600

MMU 35 70 105 7140 210

IITD 125 250 375 93000 750

Table 6.1: Databases information for performance evaluation.
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6.4 Experiments

While evaluating the performance of iris recognition system many factors affect the

accuracy of system such as iris image quality, segmentation of iris, feature extraction

techniques for analyzing the iris texture.

Since we have used the public iris image databases which are specially designed

for research having iris images of sufficient quality acquired under the strict imag-

ing conditions. We have successfully segmented the iris images from the above

databases. So, to evaluate the performance of our system we have concentrated on

feature extraction and matching stage.

Our experimentation strategy is as follows:

∙ First we have analyzed the effect of increasing number of scales of gabor filters,

as per literature using multiscale gabor filters provides better recognition. Our

gabor filter bank have maximum 4 scales and 6 orientations. For each scale we

have created four templates with orientation selectivity of 0∘, 45∘, 90∘, 135∘

respectively. These feature vectors are compared individually at the time of

matching and their average mean is taken as resulting hamming distance. So

for 4th scale we have 16 feature vectors per image which increases the size of

template. Our aim is to find the scale at which optimum results are obtained.

∙ For comparison we have tested our system using Log-gabor filters for feature

extraction with filter parameters selected to give filter bandwidth of about two

octave.

∙ We have analyzed the effect of number of shifts of template bits which accounts

the rotational inconsistencies, on iris recognition performance. The optimum

number of shifts can be determined by examining the mean and standard

deviation of the intra-class distribution. Without template shifting the intra-

class Hamming distance distribution will be more randomly distributed, since

templates, which are not properly aligned, will produce Hamming distance

values equivalent to comparing inter-class templates. As the number of shifts

increases, the mean of the intra-class distribution will converge to a constant

value, since all rotational inconsistencies would have been accounted for.
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6.5 Results for Performance Analysis using Spe-

cial Gabor Filters with One Scale.

6.5.1 For CASIA

Genuine and Imposter Distribution

Figure 6.4: Genuine and imposter distribution using special gabor filter bank.
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ROC and DET Curves

Figure 6.5: Plot of FAR versus FRR for CASIA.

Figure 6.6: Plot of Receiver Operating Characteristic curve for CASIA.
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Figure 6.7: Plot of FAR versus GAR for CASIA.

Figure 6.8: Plot of DET curve for CASIA.
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6.5.2 For MMU

Genuine and Imposter Distribution

Figure 6.9: Genuine and imposter distribution using special gabor filter bank.
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ROC and DET Curves

Figure 6.10: Plot of FAR versus FRR for MMU.

Figure 6.11: Plot of Receiver Operating Characteristic curve for MMU.

71



Figure 6.12: Plot of FAR versus GAR for MMU.

Figure 6.13: Plot of DET curve for MMU.
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6.5.3 For IITD

Genuine and Imposter Distribution

Figure 6.14: Genuine and imposter distribution using special gabor filter bank .
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ROC and DET Curves

Figure 6.15: Plot of FAR versus FRR for IITD.

Figure 6.16: Plot of Receiver Operating Characteristic curve for IITD.
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Figure 6.17: Plot of FAR versus GAR for IITD.

Figure 6.18: Plot of DET curve for IITD.
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6.6 Results for Performance Analysis using Spe-

cial Gabor Filters with Two Scales.

6.6.1 For CASIA

Genuine and Imposter Distribution

Figure 6.19: Genuine and imposter distribution using special gabor filter bank.
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ROC and DET Curves

Figure 6.20: Plot of FAR versus FRR for CASIA.

Figure 6.21: Plot of Receiver Operating Characteristic curve for CASIA.
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Figure 6.22: Plot of FAR versus GAR for CASIA.

Figure 6.23: Plot of DET curve for CASIA.
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6.6.2 For MMU

Genuine and Imposter Distribution

Figure 6.24: Genuine and imposter distribution using special gabor filter bank.
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ROC and DET Curves

Figure 6.25: Plot of FAR versus FRR for MMU.

Figure 6.26: Plot of Receiver Operating Characteristic curve for MMU.

80



Figure 6.27: Plot of FAR versus GAR for MMU.

Figure 6.28: Plot of DET curve for MMU.
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6.6.3 For IITD

Genuine and Imposter Distribution

Figure 6.29: Genuine and imposter distribution using special gabor filter bank.
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ROC and DET Curves

Figure 6.30: Plot of FAR versus FRR for IITD.

Figure 6.31: Plot of Receiver Operating Characteristic curve for IITD.
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Figure 6.32: Plot of FAR versus GAR for IITD.

Figure 6.33: Plot of DET curve for IITD.
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6.7 Results for Performance Analysis using LOG

Gabor Filters

6.7.1 For CASIA

Genuine and Imposter Distribution

Figure 6.34: Genuine and imposter distribution using Log gabor filter bank.
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ROC and DET Curves

Figure 6.35: Plot of FAR versus FRR for CASIA.

Figure 6.36: Plot of Receiver Operating Characteristic curve for CASIA.
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Figure 6.37: Plot of FAR versus GAR for CASIA.

Figure 6.38: Plot of DET curve for CASIA.
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6.7.2 For MMU

Genuine and Imposter Distribution

Figure 6.39: Genuine and imposter distribution using special gabor filter bank.
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ROC and DET Curves

Figure 6.40: Plot of FAR versus FRR for MMU.

Figure 6.41: Plot of Receiver Operating Characteristic curve for MMU.
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Figure 6.42: Plot of FAR versus GAR for MMU.

Figure 6.43: Plot of DET curve for MMU.
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6.7.3 For IITD

Genuine and Imposter Distribution

Figure 6.44: Genuine and imposter distribution using special gabor filter bank.
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ROC and DET Curves

Figure 6.45: Plot of FAR versus FRR for IITD.

Figure 6.46: Plot of Receiver Operating Characteristic curve for IITD.
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Figure 6.47: Plot of FAR versus GAR for IITD.

Figure 6.48: Plot of DET curve for IITD.
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6.7.4 Effect of Number of Shifts on Performance

For analysis of rotational inconsistencies, we have performed experiments on MMU

database, the results are as shown

Genuine and Imposter Distribution

Figure 6.49: Genuine and imposter distribution using special gabor filter bank for
4shifts.
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ROC and DET Curves

Figure 6.50: Plot of FAR versus FRR for MMU for 4shifts..

Figure 6.51: Plot of Receiver Operating Characteristic curve for MMU for 4shifts.
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Figure 6.52: Plot of FAR versus GAR for MMU for 4shifts.

Figure 6.53: Plot of DET curve for MMU for 4shifts.
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6.8 Summary of Results

From the above results it is clear that increasing number of scales of gabor filters

results in increased recognition accuracy and better class separation between genuine

and imposter distribution. We have found two scales of gabor filter provided optimal

recognition with EER of 1.49% for CASIA database. For three and four scales of

gabor filter the EER was 1.66% each for CASIA database. Similar results were

obtained for MMU and IITD database. For three and four scales of gabor filter the

number of feature vectors are more and also computation time is high. For the two

scales of gabor filters we can find frequency bandwidth in octaves as-

� = log2

(
fmax
fmin

)
(6.1)

for two scales fmax = 0.1667, fmin = 0.05, So � = 1.73 octaves. for four scales

fmax = 0.4, fmin = 0.05, So � = 3 octaves.

We have got better results for gabor filters than log-gabor for same frequency

bandwidth. The only disadvantage of gabor filters is that it needs multiscale rep-

resentation, while for log-gabor filters can have arbitrary frequency bandwidths for

one scale.

For CASIA, MMU, and IITD minimum of 8 shifts were found to give accurate

results since all rotational inconsistencies are removed. For MMU with 4 shifts in

template bits results in low recognition and poor class separation between genuine

and imposter distribution.

Tables 6.2, 6.3, 6.4 summarize the performance analysis of our implemented iris

recognition system on CASIA version 1, MMU, IITD databses respectively. In table

6.5, comparison of our implemented system with some standard iris recognition

systems is given.

Feature Extracion Threshold FAR % FRR % d’ Verification %

Gabor filter(1 scale) 0.40 3.67 3.66 4.41 96.34

Gabor filter(2 scales) 0.38 1.49 1.50 4.34 98.51

Log gabor filter 0.46 3.67 3.66 3.35 96.33

Table 6.2: Summary of performance analysis for CASIA.
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Feature Extracion Threshold FAR % FRR % d’ Verification %

Gabor filter(1 scale) 0.34 5.26 5.23 3.45 94.77

Gabor filters(2 scales) 0.34 4.76 4.76 3.20 95.24

Log gabor filter 0.45 4.71 4.76 2.62 95.24

Table 6.3: Summary of performance analysis for MMU.

Feature Extracion Threshold FAR % FRR % EER Verification %

Gabor filter(1 scale) 0.41 3.75 3.73 3.30 96.27

Gabor filter(2 scale) 0.39 2.78 2.77 4.22 97.22

Log gabor filter 0.47 8.55 8.57 2.09 91.43

Table 6.4: Summary of performance analysis for IITD.

6.9 Comparison with existing methods

Systems Recognition rate % Equal error rate %

Daugman [1] 100 0.08

Li Ma [19] 100 0.07

Tan [18] 99.19 0.57

Wildes [11] - 1.76

Our implementation 98.51 1.49

Table 6.5: Comparisons of our implemented system with existing methods.

The values in the above table are taken from [20].
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Chapter 7

Conclusion

7.1 Summary of Work

This thesis has presented an iris recognition system, which was tested using three

publicly available iris image databases in order to verify the claimed performance of

iris recognition technology.

Firstly, Two automatic segmentation algorithms were presented, which would

localize the iris region from an eye image and isolate noisy areas. First Auto-

matic segmentation algorithm uses the Integro-differential operator for localizing

the iris boundary and using binary morphology for pupil region segmentation, and

the Integro-differential operator for localizing occluding eyelids. In Second algo-

rithm Circular Hough Transform is used for localization of iris boundary and binary

morphology for pupil region segmentation is used.

Next, the segmented iris region was normalized to eliminate dimensional incon-

sistencies between iris regions. This was achieved by implementing a version of

Daugmans rubber sheet model, where the iris is modeled as a flexible rubber sheet,

which is unwrapped into a rectangular block with constant polar dimensions.

Finally, features of the iris were encoded by convolving the normalized iris region

with special gabor filterbank and phase quantizing the output in order to produce

a bit-wise biometric template. The Hamming distance was chosen as a matching

metric, which gave a measure of how many bits disagreed between two templates. A

failure of statistical independence between two templates would result in a match,

that is, the two templates were seemed to have been generated from the same

iris if the Hamming distance produced was lower than a set Hamming distance.

For comparison we also tested our system using 1D Log-Gabor filters for feature

extraction to verify our system performance.
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7.2 Summary of Findings

Analysis of the developed iris recognition system has revealed a number of interesting

conclusions. It can be stated that segmentation is the critical stage of iris recog-

nition, since areas that are wrongly identified as iris regions will corrupt biometric

templates resulting in very poor recognition. The results presented in Chapter 3

have also shown that segmentation can be the most difficult stage of iris recognition

because its success is dependent on the imaging quality of eye images. With the

CASIA database only 95% of the images managed to segment successfully due to

poor imaging conditions, while 97% of the MMU database images segmented cor-

rectly, while 92% of the MMU database images segmented correctly. (The above

results are not calculated on entire database, they were obtained on the databases

taken for performance evaluation.)

Another interesting finding was that the encoding process required two scales of

Gabor filter that provided optimal accurate recognition, since the open literature

mentions the use of multi-scale representation in the encoding process. The two

scales of gabor filter provided frequency bandwidth of 1.73 octaves.

For CASIA and IITD databases gabor filter with two scales, and template res-

olution of 64 pixels by 1024 pixels was found to provided optimum encoding. For

MMU template resolution of 30 pixels by 720 pixels was used.

Good recognition rate was achieved with the CASIA data set, with a separation

point of 0.38, a false accept rate of 1.49 % and false reject rate of 1.50 % was

possible,with equal error rate of 1.49 %, claiming the correct verification rate of

98.51 %.

For MMU data set, with a separation point of 0.34, a false accept rate of 4.76 %

and false reject rate of 4.76 % was possible,with equal error rate of 4.76 %, claiming

the correct verification rate of 95.24 %.

For IITD data set, with a separation point of 0.39, a false accept rate of 2.78 %

and false reject rate of 2.77 % was possible,with equal error rate of 2.78 %, claiming

the correct verification rate of 96.27 %.

These results confirm that iris recognition is a reliable and accurate biometric

technology.
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